
Python for Software
Development
Hans-Petter Halvorsen

https://www.halvorsen.blog

Python Software Development

OK Cancel

Do you want to learn Software
Development?

Python for Software Development

Python for Software Development

Hans-Petter Halvorsen

2020

Python for Science and Engineering
c©Hans-Petter Halvorsen

September 9, 2020

1

Preface

Python is a popular programming language, and it is one of the most used pro-
gramming languages today.

Python works on all the main platforms and operating systems used today, such
Windows, macOS, and Linux.

Python is a multi-purpose programming language, which can be use for simu-
lation, creating web pages, communicate with database systems, etc.

My Blog/Web Site [1]:
https://www.halvorsen.blog

Here you find lots of technical resources about Technology, Programming, Soft-
ware Engineering, Automation and Control, Industrial IT, etc.

Here you find my Web page with Python resources:

https://www.halvorsen.blog/documents/programming/python/

These resources are a supplement to this textbook. Here you can download the
software, download code examples, etc.

This Textbook is written in LATEXusing Overleaf.

LATEXis a document preparation system used for the communication and publi-
cation of scientific documents.

2

For more information about LATEX:
https://www.latex-project.org

Overleaf is a web-bases LATEXsystem, meaning you can write your LATEXdocuments
in your web browser, you co-work and share documents with others.

For more information about Overleaf:
https://www.overleaf.com

Python Books

You find other Python textbooks within different domains on my Python Web
page:
https://www.halvorsen.blog/documents/programming/python/

Python Books:

• Python Programming - This is a textbook in Python Programming
with lots of Practical Examples and Exercises. You will learn the necessary
foundation for basic programming with focus on Python.

• Python for Science and Engineering - This is a textbook in Python
Programming with lots of Examples, Exercises, and Practical Applications
within Mathematics, Simulations, etc. The focus is on numerical calcu-
lations in mathematics and engineering. Necessary theory is presented in
addition to many practical examples.

• Python for Control Engineering - This is a textbook in Python Pro-
gramming with lots of Examples, Exercises, and Practical Applications
within Mathematics, Simulations, Control Systems, DAQ, Database Sys-
tems, etc. The focus is on the use of Python within measurements, data
collection (DAQ), control technology, both analysis of control systems
(stability analysis, frequency response, ...) and implementation of control
systems (PID, etc.). Required theory is presented in addition to many
practical examples and exercises in Python.

• Python for Software Development - This is a textbook in Python Pro-
gramming with lots of Examples, Exercises, and Practical Applications
within Software Systems, Software Development, Software Engineering,
Database Systems, Web Application Desktop Applications, GUI Applica-
tions, etc. The focus is on the use of Python for creating modern Software
Systems. Required theory is presented in addition to many practical ex-
amples and exercises in Python.

3

Programming

The way we create software today has changed dramatically the last 30 years,
from the childhood of personal computers in the early 80s to today’s powerful
devices such as Smartphones, Tablets and PCs.

The Internet has also changed the way we use devices and software. We still
have traditional desktop applications, but Web Sites, Web Applications and so-
called Apps for Smartphones, etc. are dominating the software market today.

We need to find and learn Programming Languages that are suitable for the
New Age of Programming.

We have today several thousand different Programming Languages today. I
guess you will need to learn more than one Programming Language to survive
in today’s software market.

You find lots of Programming Resources here:
https://www.halvorsen.blog/documents/programming/

Software Engineering

Software Engineering is the discipline for creating software applications. A
systematic approach to the design, development, testing, and maintenance of
software.

The main parts or phases in the Software Engineering process are:

• Planning

• Requirements Analysis

• Design

• Implementation

• Testing

• Deployment and Maintenance

You find lots of Software Engineering Resources here:
https://www.halvorsen.blog/documents/programming/softwareengineering/

4

5

Contents

I Getting Started with Python 12

1 Introduction 13
1.1 The New Age of Programming 13
1.2 MATLAB . 17

2 What is Python? 19
2.1 Introduction to Python . 19

2.1.1 Interpreted vs. Compiled 20
2.2 Python Packages . 21

2.2.1 Python Packages for Science and Numerical Computations 22
2.3 Anaconda . 22
2.4 Python Editors . 23

2.4.1 Python IDLE . 23
2.4.2 Visual Studio Code . 24
2.4.3 Spyder . 24
2.4.4 Visual Studio . 24
2.4.5 PyCharm . 24
2.4.6 Wing Python IDE . 25
2.4.7 Jupyter Notebook . 25

2.5 Resources . 25
2.6 Installing Python . 25

2.6.1 Python Windows 10 Store App 26
2.6.2 Installing Anaconda . 26
2.6.3 Installing Visual Studio Code 26

3 Start using Python 28
3.1 Python IDE . 28
3.2 My first Python program . 28
3.3 Python Shell . 29
3.4 Running Python from the Console 29

3.4.1 Opening the Console on macOS 30
3.4.2 Opening the Console on Windows 31
3.4.3 Add Python to Path . 31

3.5 Scripting Mode . 33
3.5.1 Run Python Scripts from the Python IDLE 33
3.5.2 Run Python Scripts from the Console (Terminal) macOS 34
3.5.3 Run Python Scripts from the Command Prompt in Win-

dows . 35

6

3.5.4 Run Python Scripts from Spyder 35

4 Basic Python Programming 38
4.1 Basic Python Program . 38

4.1.1 Get Help . 38
4.2 Variables . 38

4.2.1 Numbers . 40
4.2.2 Strings . 41
4.2.3 String Input . 42

4.3 Built-in Functions . 42
4.4 Python Standard Library . 43
4.5 Using Python Libraries, Packages and Modules 44

4.5.1 Python Packages . 46
4.6 Plotting in Python . 46

4.6.1 Subplots . 49
4.6.2 Exercises . 51

II Python Programming 52

5 Python Programming 53
5.1 If ... Else . 53
5.2 Arrays . 54
5.3 For Loops . 56

5.3.1 Nested For Loops . 59
5.4 While Loops . 60
5.5 Exercises . 60

6 Creating Functions in Python 62
6.1 Introduction . 62
6.2 Functions with multiple return values 64
6.3 Exercises . 65

7 Creating Classes in Python 68
7.1 Introduction . 68
7.2 The init () Function . 69
7.3 Exercises . 72

8 Creating Python Modules 73
8.1 Python Modules . 73
8.2 Exercises . 74

9 File Handling in Python 76
9.1 Introduction . 76
9.2 Write Data to a File . 76
9.3 Read Data from a File . 77
9.4 Logging Data to File . 77
9.5 Web Resources . 78
9.6 Exercises . 78

7

10 Error Handling in Python 81
10.1 Introduction to Error Handling 81

10.1.1 Syntax Errors . 81
10.1.2 Exceptions . 81

10.2 Exceptions Handling . 82

11 Debugging in Python 84

12 Installing and using Python Packages 85
12.1 What is PIP? . 85

III Python Environments and Distributions 86

13 Introduction to Python Environments and Distributions 87
13.1 Package and Environment Managers 88

13.1.1 PIP . 88
13.1.2 Conda . 88

13.2 Python Virtual Environments . 89

14 Anaconda 90
14.1 Anaconda Navigator . 90
14.2 Anaconda Prompt . 90

15 Enthought Canopy 93

IV Python Editors 94

16 Python Editors 95

17 Spyder 97
17.1 Configuration . 98

18 Visual Studio Code 100
18.1 Introduction to Visual Studio Code 100
18.2 Python in Visual Studio Code . 101

19 Visual Studio 102
19.1 Introduction to Visual Studio . 102
19.2 Work with Python in Visual Studio 102

19.2.1 Make Visual Studio ready for Python Programming . . . 103
19.2.2 Python Interactive . 103
19.2.3 New Python Project . 104

20 PyCharm 110

21 Wing Python IDE 112

22 Jupyter Notebook 114
22.1 JupyterHub . 115
22.2 Microsoft Azure Notebooks . 115

8

V Data Acquisition (DAQ) with Python 117

23 Plotting Sensor Data 118
23.1 Introduction . 118
23.2 Introduction to Real-Time Plotting 118
23.3 Real-Time Plotting with Animation 120

23.3.1 Speeding Up the Plot Animation 122

24 Data Acquisition (DAQ) with Python 125
24.1 Introduction to DAQ . 125
24.2 Data Acquisition using NI DAQ Devices 125

24.2.1 NI-DAQmx . 127
24.2.2 Measurement Automation Explorer (MAX) 128

24.3 NI-DAQmx Python API . 128
24.3.1 Analog Write . 129
24.3.2 Analog Read . 129
24.3.3 Digital Write . 131
24.3.4 Digital Read . 131

24.4 Controlling LEDs . 132
24.5 Read Data from Temperature Sensors 134

24.5.1 Read Data from TMP36 Temperature Sensor 134
24.5.2 Read Data from Thermistor 138
24.5.3 Read Data NI TC-01 Thermocouple Device 142

24.6 Data Logging . 143

VI Python Database Development 144

25 Database Applications with Python 145
25.1 Structured Query Language (SQL) 145
25.2 SQL Server . 146
25.3 MySQL . 146
25.4 MongoDB . 146

26 Structured Query Language (SQL) 147

27 SQL Server with Python 148
27.1 Introduction to SQL Server . 148
27.2 SQL Server drivers for Python 148
27.3 pyodbc . 148

27.3.1 Installation of pyodbc . 148
27.3.2 ODBC Drivers . 148

27.4 SQL Server Python Examples . 149
27.5 Stored Procedures . 150
27.6 Resources . 150
27.7 pymssql . 150
27.8 Resources . 150

28 MySQL with Python 151

9

29 MongoDB with Python 152
29.1 Introduction to MongoDB . 152
29.2 MongoDB with Python . 152

29.2.1 PyMongo . 152
29.3 Additional Resources . 153

VII Python Application Development 154

30 Development of Applications with Python 155
30.1 Mathematics, Science and Engineering 156
30.2 Desktop GUI Applications . 156

30.2.1 PyQt . 157
30.2.2 PySide2 . 158
30.2.3 Tkinter . 158
30.2.4 WxPython . 158

30.3 Web Applications . 159
30.4 Database Applications . 159

30.4.1 SQL Server . 159
30.4.2 MySQL . 159
30.4.3 MariaDB . 160
30.4.4 MongoDB . 160

31 Python Integration with Visual Studio 161

32 Python Integration with LabVIEW 162
32.1 What is LabVIEW? . 162
32.2 Using Python in LabVIEW . 162

33 Raspberry Pi and Python 167
33.1 What is Raspberry Pi? . 167

34 Web Development with Python 168
34.1 Introduction to Web Development 168

34.1.1 HTML . 168
34.1.2 CSS . 168
34.1.3 JavaScript . 168

34.2 Introduction to Web Frameworks 168
34.2.1 PHP . 169
34.2.2 ASP.NET . 169

34.3 Django - Python-based Web Framework 169

35 Create GUI Applications 170
35.1 LabVIEW . 170
35.2 Visual Studio and C# . 170
35.3 Web Development . 170

36 Machine Learning with Python 171
36.1 Introduction to Machine Learning 171

10

VIII Python PyQt GUI Development 172

37 Getting Started with PyQt 173
37.1 Introduction . 173
37.2 Introduction to Qt . 173
37.3 Introduction to PyQt . 174

37.3.1 PyQtChart . 174
37.4 Installing PyQt . 175

37.4.1 Installation of PyQt . 175
37.4.2 Installation of Qt Designer 175
37.4.3 Installation of PyQtChart 175

37.5 PyQt Basics . 176
37.6 PyQt Widgets . 178
37.7 Event Handling in PyQt . 181
37.8 PyQt Designer . 184
37.9 PyQt Applications Examples . 184

IX Resources 186

38 Python Resources 187
38.1 Python Distributions . 187
38.2 Python Libraries . 187
38.3 Python Editors . 187
38.4 Python Tutorials . 188
38.5 Python in Visual Studio . 188

X Solutions to Exercises 191

11

Part I

Getting Started with
Python

12

Chapter 1

Introduction

With this textbook you will learn basic Python programming. The textbook
contains lots of examples and self-paced tasks that the users should go through
and solve in their own pace.

You will find additional resources on my blog/web site [1].
https://www.halvorsen.blog

My Web Site about Python is:
https://www.halvorsen.blog/documents/programming/python/

See Figure 1.1

1.1 The New Age of Programming

The way we create software today has changed dramatically the last 30 years,
from the childhood of personal computers in the early 80s to today’s powerful
devices such as Smartphones, Tablets and PCs.

The Internet has also changed the way we use devices and software. We still
have traditional desktop applications, but Web Sites, Web Applications and so-
called Apps for Smartphones, etc. are dominating the software market today.

We need to find and learn Programming Languages that are suitable for the
New Age of Programming.

We have today several thousand different Programming Languages, so why
should we learn Python? I guess you will need to learn more than one Pro-
gramming Language to survive in today’s software market. Python is easy to
learn, so it it a good starting point for new programmers.

Python is an interpreted, high-level, general-purpose programming language.
Created by Guido van Rossum and first released in 1991 [2].

13

Figure 1.1: Web Site - Python

Python is a fairly old Programming Language (1991) compared to many other
Programming Languages like C# (2000), Swift (2014), Java (1995), PHP (1995).

Python has during the last 10 years become more and more popular. Today,
Python has become one of the most popular Programming Languages.

There are many different rankings regarding which programming language which
is most popular. In most of these ranking, Python is in top 10.

One of these rankings is the IEEE Spectrum’s ranking of the top programming
languages [3].

From this ranking we see that Python is the most popular Programming Lan-
guage in 2018. See Figure 1.2
As we see in Figure 1.2 they categorize the different Programming Languages
into the following categories:

• Web

14

Figure 1.2: The Most Popular Programming Languages

• Mobile

• Enterprise

• Embedded

According to Figure 1.2 we see that Python can be used to program Web Ap-
plications, Enterprise Applications and Embedded Applications.

So far Python is not used or not optimized for creating Mobile Applications. We
have today 2 major Mobile platforms; iOS Applications are mainly programmed
with the Swift Programming language, while Android Applications are mainly
programmed with either Java or Kotlin.

Another survey is the ”Stack Overflow Developer Survey 2018” [4]. See Figure
1.3.

As we can see from [5] and Figure 1.4, Python becomes more and more popular
year by year.

Based on Figure 1.4, the source [5] try to predict the future of Python, see
Figure 1.5.

Based on the surveys and statistics mention above, obviously Python is a pro-
gramming language that you should learn.

Lets summarize:

• Python is fun to learn and use and it is also named after the British
comedy group called Monty Python.

• Python has a simple and flexible code structure and the code is easy to
read.

15

Figure 1.3: The Top Programming Languages - Stack Overflow Survey

• Python is highly extendable due to its high number of free available
Python Packaged and Libraries

• Python can be used on all platforms (Windows, macOS and Linux).

• Python is multi-purpose and can be used for to program Web Applications,
Enterprise Applications and Embedded Applications, and within Data
Science and Engineering Applications.

• The popularity of Python is growing fast.

• Python is open source and free to use

• The growing Python community makes it easy to find documentation,
code examples and get help when needed

In general, Python is a multipurpose programming language that can be used
in many situations. But there is not one programming language which is best
in all kind of situations, so it is important that you know about and have skills
in different languages.

My list of recommendations (one of many):

• Visual Studio and C

• LabVIEW - a graphical programming language well suited for hardware
integration, taking measurements and data logging

• MATLAB - Numerical calculations and Scientific computing

• Python - Numerical calculations, and Scientific computing, etc.

• Web Programming, such as HTML, CSS, JavaScript and a Server-side
framework/programming language like PHP, ASP.NET (C or VB.NET),
Django (Python based)

16

Figure 1.4: The Incredible Growth of Python

• Databases (such as SQL Server and MySQL) and using the Structured
Query Language (SQL) or the upcoming NoSQL databases

• App Development for the 2 main platforms iOS (XCode using the Swift
Programming Language) and Android (Android Studio using the Java
Programming Language or Kotlin Programming language)

If you have skills in most of the tools, programming languages and frameworks
mention above, you are well suited for working as a full-time programmer or
software engineer.

1.2 MATLAB

If you are looking for MATLAB, please see the following:
https://www.halvorsen.blog/documents/programming/matlab/

17

Figure 1.5: The Future of Python

18

Chapter 2

What is Python?

2.1 Introduction to Python

Python is an open source and cross-platform programming language, that has
become increasingly popular over the last ten years. It was first released in
1991. Latest version is 3.7.0. CPython is the reference implementation of the
Python programming language. Written in C, CPython is the default and most
widely-used implementation of the language.

Python is a multi-purpose programming languages (due to its many extensions),
examples are scientific computing and calculations, simulations, web develop-
ment (using, e.g., the Django Web framework), etc.

Python Home Page [6]:
https://www.python.org

The programming language is maintained and available from (Python Software
Foundation): https://www.python.org Here you can download the basic Python
features in one package, which includes the Python programming language in-
terpreter, and a basic code editor, or an integrated development environment,
called IDLE. See Figure 2.1

But this is just the Python core, i.e. the interpreter a very basic editor, and the
minimum needed to create basic Python programs.

Typically you will need more features for solving your tasks. Then you can in-
stall and use separate Python packages created by third parties. These packages
need to be downloaded and installed separately (typically you use something
called PIP), or you choose to use, e.g., a distribution package like Anaconda.

Python is an object-oriented programming language (OOP), but you can use
Python in basic application without the need to know about or use the object-
oriented features in Python.

Python is an interpreted programming language, this means that as a developer

19

Figure 2.1: IDLE - Basic Python Editor

you write Python (.py) files in a text editor and then put those files into the
python interpreter to be executed. Depending on the Editor you are using, this
is either done automatically, or you need to do it manually.

Here are some important Python sources: [6], [7], [8].

2.1.1 Interpreted vs. Compiled

What are the differences between Interpreted programming languages and Com-
piled programming languages? What kind should you choose, and why should
you bother?

Programming languages generally fall into one of two categories: Compiled or
Interpreted. With a compiled language, code you enter is reduced to a set of
machine-specific instructions before being saved as an executable file.
Both approaches have their advantages and disadvantages.

20

With interpreted languages, the code is saved in the same format that you en-
tered. Compiled programs generally run faster than interpreted ones because
interpreted programs must be reduced to machine instructions at run-time. It
is usually easier to develop applications in an interpreted environment because
you don’t have to recompile your application each time you want to test a small
section.

Python is an interpreted programming language, while e.g., C/C++ are trans-
lated by running the source code through a compiler, i.e., C/C++ are compiled
languages.

Interpreted languages, in contrast, must be parsed, interpreted, and executed
each time the program is run.

Another example of an interpreted programming language is PHP, which is
mainly used to create dynamic web pages and web applications.

Compiled languages are all translated by running the source code through a
compiler. This results in very efficient code that can be executed any number of
times. The overhead for the translation is incurred just once, when the source
is compiled; thereafter, it need only be loaded and executed.

During the design of an application, you might need to decide whether to use a
compiled language or an interpreted language for the application source code.

Interpreted languages, in contrast, must be parsed, interpreted, and executed
each time the program is run

Thus, an interpreted language is generally more suited for doing ”ad hoc” cal-
culations or simulations, while compiled languages are better for permanent
applications where speed is in focus.

2.2 Python Packages

With Python you don’t get so much out of the box. Instead of having all of
its functionality built into its core, you need to install different packages for
different topics.

This approach has advantages and disadvantages. An disadvantage is that you
need to install these packages separately and then later import these modules
in your code.

This is also typical approach for open source software, because everybody can
create their own Python packages and distribute them. In that way you also
find Python packages for almost everything, from Scientific Computing to Web
Development.

21

These packages need to be downloaded and installed separately, or you choose
to use, e.g., a distribution package like Anaconda, where you typically get the
packages you need for scientific computing. With Anaconda you typically get
the same features as with MATLAB.

Lots of Python packages exists, depending on what you are going to solve.
We have Python packages for Desktop GUI Development, Database Develop-
ment, Web Development, Software Development, etc.

See an overview of Applications for Python:
https://www.python.org/about/apps/

See also the Python Package Index (PyPI) web site:
https://pypi.org

Here you can search for, download and install many hundreds Python Packages
within different topics and applications. You can also make your own Python
Packages and distribute them here.

2.2.1 Python Packages for Science and Numerical Com-
putations

Some important Python Packages for Science and Numerical Computations are:

• NumPy - NumPy is the fundamental package for scientific computing
with Python [9]

• SciPy - SciPy is a free and open-source Python library used for scientific
computing and technical computing. SciPy contains modules for optimiza-
tion, linear algebra, integration, interpolation, special functions, FFT, sig-
nal and image processing, ODE solvers and other tasks common in science
and engineering. [9]

• Matplotlib - Matplotlib is a Python 2D plotting library. [10]

• Pandas - Pandas Python Data Analysis Library [11]

These packages need to be downloaded and installed separately, or you choose
to use, e.g., a distribution package like Anaconda, where you typically get the
packages you need for scientific computing. With Anaconda you typically get
the same features as with MATLAB.

2.3 Anaconda

Anaconda is a distribution package, where you get Python compiler, Python
packages and the Spyder editor, all in one package.

Anaconda includes Python, the Jupyter Notebook, and other commonly used
packages for scientific computing and data science.

22

They offer a free version (Anaconda Distribution) and a paid version (Enter-
prise) Anaconda is available for Windows, macOS, and Linux

Web:
https://www.anaconda.com

Wikipedia:
https://en.wikipedia.org/wiki/Anaconda(Pythondistribution)

Spyder and the Python packages (NumPy, SciPy, Matplotlib, ...) mention above
+++ are included in the Anaconda Distribution.

2.4 Python Editors

An Editor is a program where you create your code (and where you can run
and test it). Most Editors have also features for Debugging. For simple Python
programs you can use the IDLE Editor, but for more advanced programs a bet-
ter editor is recommended.

Examples of Python Editors:

• Python IDLE

• Visual Studio Code

• Spyder

• Visual Studio

• PyCharm

• Wing Python IDE

• Jupyter Notebook

These editors are shortly described below and in more detail later in this text-
book.

Which editor you should use depends on your background, what kind of code
editors you have used previously, your programming skills, what your are going
to develop in Python, etc.

2.4.1 Python IDLE

The programming language is maintained and available from (Python Software
Foundation): https://www.python.org Here you can download the basic Python
features in one package, which includes the Python programming language in-
terpreter, and a basic code editor, or an integrated development environment,
called IDLE. See Figure 2.1

Web:
https://www.python.org

23

2.4.2 Visual Studio Code

Visual Studio Code is a source code editor developed by Microsoft for Windows,
Linux and macOS.

Web:
https://code.visualstudio.com

Resources: Getting Started with Python in Visual Studio Code

2.4.3 Spyder

Spyder is an open source cross-platform integrated development environment
(IDE) for scientific programming in the Python language.

Web:
https://www.spyder-ide.org

Wikipedia:
https://en.wikipedia.org/wiki/Spyder(software)

Spyder is included in the Anaconda Distribution.

2.4.4 Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from
Microsoft. It is used to develop computer programs, as well as websites, web
apps, web services and mobile apps. The deafult (main) programming language
in Visual studio is C, but many other programming languages are supported.

Visual studio is available for Windows and macOS.

Visual Studio (from 2017), has integrated support for Python, it is called
”Python Support in Visual Studio”.

Web:
https://visualstudio.microsoft.com

Wikipedia:
https://en.wikipedia.org/wiki/MicrosoftV isualStudio

2.4.5 PyCharm

PyCharm is cross-platform, with Windows, macOS and Linux versions. The
Community Edition is free to use, while the Professional Edition (paid version)
has some extra features.

24

Web:
https://www.jetbrains.com/pycharm/

2.4.6 Wing Python IDE

The Wing Python IDE family of integrated development environments (IDEs)
from Wingware were created specifically for the Python programming language.

3 different version of Wing exists [12]:

• Wing 101 – a very simplified free version, for teaching beginning pro-
grammers

• Wing Personal – free version that omits some features, for students and
hobbyists

• Wing Pro – a full-featured commercial (paid) version, for professional
programmers

2.4.7 Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to cre-
ate and share documents that contain live code, equations, visualizations and
text.

Web:
http://jupyter.org

Wikipedia:
https://en.wikipedia.org/wiki/ProjectJupyter

2.5 Resources

Here are some useful Python resources:

• The official Python Tutorial
- https://docs.python.org/3.7/tutorial/index.html

• The official Python Documentation
- https://docs.python.org/3.7/index.html

• Python Tutorial (w3schools.com) [13]
- https://www.w3schools.com/python/

2.6 Installing Python

The Python programming language is maintained and available from (Python
Software Foundation):

25

https://www.python.org

Here you can download the basic Python features in one package, which includes
the Python programming language interpreter, and a basic code editor, or an
integrated development environment, called IDLE. See Figure 2.1

For basic Python programming this is good enough.

For more advanced Python Programming you typically need a better Code Ed-
itor and additional Packages.

For the basic Python examples in the beginning, the basic Python software
from:
https://www.python.org is good enough.

I suggest you start with the basic Python software in order to learn the basics,
then you can upgrade to a better Editor, install addition Python packages (either
manually or or install Anaconda where ”everything” is included).

2.6.1 Python Windows 10 Store App

Python 3.7 is also available in the Microsoft Store for Windows 10.

The Microsoft Store version of Python 3.7 is a simplified installer for running
scripts and packages.

Microsoft Store version of Python 3.7 is very basic but it’s good enough to run
the simple scripts.

Python 3.7 Microsoft Store edition will receive all updates automatically when
they are released and no manual action is required from your end.

In order to install the Microsoft Store version of Python just open Microsoft
Store in Windows 10 and search for Python.

2.6.2 Installing Anaconda

The Spyder Code Editor and the Python packages (such as NumPy, SciPy, mat-
plotlib, etc) are included in the Anaconda Distribution.

Download and install from:
https://www.anaconda.com

2.6.3 Installing Visual Studio Code

Visual Studio Code code is a simple and easy to use editor that can be used for
many different programming languages.

26

Download and install from:
https://code.visualstudio.com

Getting Started with Python in Visual Studio Code:
https://code.visualstudio.com/docs/python/python-tutorial

27

Chapter 3

Start using Python

In this chapter we will start to use Python in some simple examples.

3.1 Python IDE

The basic code editor, or an integrated development environment, called IDLE.
See Figure 3.1.

Other Python Editors will be discussed more in detail later. For now you can
use the basic Python IDE (IDLE) or Spyder if you have installed the Anaconda
distribution package.

Figure 3.1: Python Shell / Python IDLE Editor

3.2 My first Python program

We will start using Python and create some code examples.

28

Example 3.2.1. Plotting in Python

Lets open your Python Editor and type the following:

1 pr in t (”He l lo World ! ”)

Listing 3.1: Hello World Python Example

[End of Example]

An extremely useful command is help(), which enters a help functionality to
explore all the stuff python lets you do, right from the interpreter. Press q to
close the help window and return to the Python prompt.

You can use Python in different ways, either in ”interactive” mode or in ”Script-
ing” mode.

The python program that you have installed will by default act as something
called an interpreter. An interpreter takes text commands and runs them as
you enter them - very handy for trying things out.

Yo can run Python interactively in different ways either using the Console which
is part of the operating system or the Python IDLE and the Python Shell which
is part of the basic Python installation from https://www.python.org.

3.3 Python Shell

In interactive Mode you use the Python Shell as seen in Figure 3.1.

Here you type one and one command at a time after the ”>>>” sign in the
Python Shell.

1 >>> pr in t (”He l lo World ! ”)

3.4 Running Python from the Console

A console (or ”terminal”, or ‘command prompt’) is a textual way to interact
with your OS (Operating System).

The python program that you have installed will by default act as something
called an interpreter. An interpreter takes text commands and runs them as
you enter them - very handy for trying things out.

Below we see how we can run Python from the Console which is part of the OS.

29

3.4.1 Opening the Console on macOS

The standard console on macOS is a program called Terminal. Open Terminal
by navigating to Applications, then Utilities, then double-click the Terminal pro-
gram. You can also easily search for it in the system search tool in the top right.

The command line Terminal is a tool for interacting with your computer. A
window will open with a command line prompt message, something like this:

Last l o g i n : Tue Dec 11 08 : 33 : 51 on conso l e
computername : ˜ username

Just type python at your console, hit Enter, and you should enter Python’s
Interpreter.

1 Last l o g i n : Tue Dec 11 12 : 34 : 16 on ttys000
2 Hans−Petter−Work−MacBook−Air : ˜ hansha$ python
3 Python 3 . 6 . 5 |Anaconda , Inc . | (de fau l t , Apr 26 2018 , 0 8 : 4 2 : 3 7)
4 [GCC 4 . 2 . 1 Compatible Clang 4 . 0 . 1 (tags /RELEASE 401/ f i n a l)] on

darwin
5 Type ” help ” , ” copyr ight ” , ” c r e d i t s ” or ” l i c e n s e ” f o r more

in fo rmat ion .
6 >>>

The prompt >>> on the last line indicates that you are now in an interactive
Python interpeter session, also called the “Python shell”. This is different from
the normal terminal command prompt!

You can now enter some code for python to run. Try:

>>> pr in t (” He l lo World”)

Se also Figure 3.2.

Figure 3.2: Console macOS

Try other Python commands, e.g.:

1 >>> a = 5
2 >>> b = 2
3 >>> x = 5
4 >>> y = 3∗a + b
5 >>> y

30

3.4.2 Opening the Console on Windows

Window’s console is called the Command Prompt, named cmd. An easy way to
get to it is by using the key combination Windows+R (Windows meaning the
windows logo button), which should open a Run dialog. Then type cmd and
hit Enter or click Ok.

You can also search for it from the start menu.

It should look like:

C:\ Users \myusername>

Just type python in the Command Prompt, hit Enter, and you should enter
Python’s Interpreter. See Figure 3.3.

Figure 3.3: Command Prompt Windows

If you get an error message like this:

’python’ is not recognized as an internal or external command, operable program
or batch file.
Then you need to add Python to your path. See instructions below.

Note! This is also an option during the setup. While installing you can se-
lect ”Add Python.exe to path”. This option is by default set to ”Off”. To get
that option you need to select ”Customize”, not using the ”Default” installation.

3.4.3 Add Python to Path

In the Windows menu, search for “advanced system settings” and select View
advanced system settings.

In the window that appears, click Environment Variables. . . near the bottom
right. See Figure 3.4.

31

Figure 3.4: Windows System Properties

In the next window, find and select the user variable named Path and click
Edit. . . to change its value. See Figure 3.5.

Select ”New” and add the path where ”python.exe” is located. See Figure 3.6.

The Default Location is:

C:\ Users \ user \AppData\Local \Programs\Python\Python37−32\

Click Save and open the Command Prompt once more and enter ”python” to
verify it works. See Figure 3.3.

32

Figure 3.5: Windows System Properties

3.5 Scripting Mode

In ”Scripting” mode you can write a Python Program with multiple Python
commands and then save it as a file (.py).

3.5.1 Run Python Scripts from the Python IDLE

From the Python Shell you select File → New File, or you can open an existing
Pytho program or Python Script by selecting File → Open...

Lets create a new Script and type in the following:

1 pr in t (”He l lo ”)
2 pr in t (”World”)
3 pr in t (”How are you?”)

In Figure 3.7 we see how this is done. As you see we can enter many Python
commands that together makes a Python program or Python script.
From the Python Shell you select Run→ Run Module or hit F5 in order to run
or execute the Python Script. See Figure 3.8.

33

Figure 3.6: Windows System Properties

The IDLE editor is very basic, for more complicated tasks you typically may
prefer to use another editor like Spyder, Visual Studio Code, etc.

3.5.2 Run Python Scripts from the Console (Terminal)
macOS

From the Console (Terminal) on macOS:

1 $ cd /Users /username/Downloads
2 $ python he l l owor ld . py

Note! Make sure you are at your system command prompt, which will have $
or > at the end, not in Python mode (which has >>> instead)!

See also Figure 3.9.
Then it responds with:

1 Hel lo
2 World
3 How are you?

34

Figure 3.7: Python Script

3.5.3 Run Python Scripts from the Command Prompt in
Windows

From Command Prompt in Window:

1 > cd /
2 > cd Temp
3 > python he l l owor ld . py

Note! Make sure you are at your system command prompt, which will have >
at the end, not in Python mode (which has >>> instead)!

See also Figure 3.10.
Then it responds with:

1 Hel lo
2 World
3 How are you?

3.5.4 Run Python Scripts from Spyder

If you have installed the Anaconda distribution package you can use the Spyder
editor. See 3.11.

In the Spyder editor we have the Script Editor to the left and the interactive
Python Shell or the Console window to the right. See See 3.11.

35

Figure 3.8: Running a Python Script

Figure 3.9: Running Python Scripts from Console window on macOS

Figure 3.10: Running Python Scripts from Console window on macOS

36

Figure 3.11: Running a Python Script in Spyder

37

Chapter 4

Basic Python Programming

4.1 Basic Python Program

We will start using Python and create some code examples.

We use the basic IDLE editor (or another Python Editor)

Example 4.1.1. Hello World Example

Lets open your Python Editor and type the following:

1 pr in t (”He l lo World ! ”)

Listing 4.1: Hello World Python Example

[End of Example]

4.1.1 Get Help

An extremely useful command is help(), which enters a help functionality to
explore all the stuff python lets you do, right from the interpreter.

Press q to close the help window and return to the Python prompt.

4.2 Variables

Variables are defined with the assignment operator, “=”. Python is dynamically
typed, meaning that variables can be assigned without declaring their type, and
that their type can change. Values can come from constants, from computation
involving values of other variables, or from the output of a function.

38

Example 4.2.1. Creating and using Variables in Python

We use the basic IDLE (or another Python Editor) and type the following:

1 >>> x = 3
2 >>> x
3 3

Listing 4.2: Using Variables in Python

Here we define a variable and sets the value equal to 3 and then print the result
to the screen.

[End of Example]

You can write one command by time in the IDLE. If you quit IDLE the variables
and data are lost. Therefore, if you want to write a somewhat longer program,
you are better off using a text editor to prepare the input for the interpreter
and running it with that file as input instead. This is known as creating a script.

Python scripts or programs are save as a text file with the extension .py

Example 4.2.2. Calculations in Python

We can use variables in a calculation like this:

1 x = 3
2 y = 3∗x
3 pr in t (y)

Listing 4.3: Using and Printing Variables in Python

We can implement the formula y = ax+ b like this:

1 a = 2
2 b = 5
3 x = 3
4

5 y = a∗x + b
6

7 pr in t (y)

Listing 4.4: Calculations in Python

As seen in the examples, you can use the print() command in order to show the
values on the screen.

[End of Example]

39

A variable can have a short name (like x and y) or a more descriptive name
(sum, amount, etc).

You don need to define the variables before you use them (like you need to to
in, e.g., C/C++/C).

Figure 4.1 show these examples using the basic IDLE editor.

Figure 4.1: Basic Python

Here are some basic rules for Python variables:

• A variable name must start with a letter or the underscore character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters (A-z, 0-9) and
underscores

• Variable names are case-sensitive, e.g., amount, Amount and AMOUNT
are three different variables.

4.2.1 Numbers

There are three numeric types in Python:

• int

• float

• complex

40

Variables of numeric types are created when you assign a value to them, so in
normal coding you don’t need to bother.

Example 4.2.3. Numeric Types in Python

1 x = 1 # in t
2 y = 2 .8 # f l o a t
3 z = 3 + 2 j # complex

Listing 4.5: Numeric Types in Python

This means you just assign values to a variable without worrying about what
kind of data type it is.

1 pr in t (type (x))
2 pr in t (type (y))
3 pr in t (type (z))

Listing 4.6: Check Data Types in Python

If you use the Spyder Editor, you can see the data types that a variable has
using the Variable Explorer (Figure 4.2):

Figure 4.2: Variable Editor in Spyder

[End of Example]

4.2.2 Strings

Strings in Python are surrounded by either single quotation marks, or double
quotation marks. ’Hello’ is the same as ”Hello”.
Strings can be output to screen using the print function. For example: print(”Hello”).

Example 4.2.4. Using Strings in Python

Below we see examples of using strings in Python:

1 a = ”He l lo World ! ”
2

3 pr in t (a)
4

5 pr in t (a [1])
6 pr in t (a [2 : 5])
7 pr in t (l en (a))
8 pr in t (a . lower ())

41

9 pr in t (a . upper ())
10 pr in t (a . r ep l a c e (”H” , ”J”))
11 pr in t (a . s p l i t (” ”))

Listing 4.7: Strings in Python

As you see in the example, there are many built-in functions form manipulating
strings in Python. The Example shows only a few of them.

Strings in Python are arrays of bytes, and we can use index to get a specific
character within the string as shown in the example code.

[End of Example]

4.2.3 String Input

Python allows for command line input.

That means we are able to ask the user for input.

Example 4.2.5. String Input in Python

The following example asks for the user’s name, then, by using the input()
method, the program prints the name to the screen:

1 pr in t (”Enter your name : ”)
2 x = input ()
3 pr in t (”Hel lo , ” + x)

Listing 4.8: String Input

[End of Example]

4.3 Built-in Functions

Python consists of lots of built-in functions. Some examples are the print func-
tion that we already have used (perhaps without noticing it is actually a Built-in
function).

Python also consists of different Modules, Libraries or Packages. These Mod-
ules, Libraries or Packages consists of lots of predefined functions for different
topics or areas, such as mathematics, plotting, handling database systems, etc.
See Section 4.4 for more information and details regarding this.

In another chapter we will learn to create our own functions from scratch.

42

4.4 Python Standard Library

Python allows you to split your program into modules that can be reused in
other Python programs. It comes with a large collection of standard modules
that you can use as the basis of your programs.
The Python Standard Library consists of different modules for handling file
I/O, basic mathematics, etc. You don’t need to install these separately, but you
need to important them when you want to use some of these modules or some
of the functions within these modules.

The math module has all the basic math functions you need, such as: Trigono-
metric functions: sin(x), cos(x), etc. Logarithmic functions: log(), log10(), etc.
Constants like pi, e, inf, nan, etc.

Example 4.4.1. Using the math module

We create some basic examples how to use a Library, a Package or a Module:

If we need only the sin() function, we can do like this:

1 from math import s i n
2

3 x = 3.14
4 y = s i n (x)
5

6 pr in t (y)

If we need a few functions, we can do like this:

1 from math import s in , cos
2

3 x = 3.14
4 y = s i n (x)
5 pr in t (y)
6

7 y = cos (x)
8 pr in t (y)

If we need many functions, we can do like this:

1 from math import ∗
2

3 x = 3.14
4 y = s i n (x)
5 pr in t (y)
6

7 y = cos (x)
8 pr in t (y)

We can also use this alternative:

1 import math
2

3 x = 3.14
4 y = math . s i n (x)
5

6 pr in t (y)

43

We can also write it like this:

1 import math as mt
2

3 x = 3.14
4 y = mt . s i n (x)
5

6 pr in t (y)

[End of Example]

There are advantages and disadvantages with the different approaches. In your
program you may need to use functions from many different modules or pack-
ages. If you import the whole module instead of just the function(s) you need
you use more of the computer memory.

Very often we also need to import and use multiple libraries where the different
libraries have some functions with the same name but different use.

Other useful modules in the Python Standard Library are statistics (where
you have functions like mean(), stdev(), etc.)

For more information about the functions in the Python Standard Library,
see:
https://docs.python.org/3/library/index.html

4.5 Using Python Libraries, Packages and Mod-
ules

Rather than having all of its functionality built into its core, Python was de-
signed to be highly extensible. This approach has advantages and disadvantages.
A disadvantage is that you need to install these packages separately and then
later import these modules in your code.

Some important packages are:

• NumPy - NumPy is the fundamental package for scientific computing
with Python

• SciPy - SciPy is a free and open-source Python library used for scientific
computing and technical computing. SciPy contains modules for optimiza-
tion, linear algebra, integration, interpolation, special functions, FFT, sig-
nal and image processing, ODE solvers and other tasks common in science
and engineering.

• Matplotlib - Matplotlib is a Python 2D plotting library

44

Lots of other packages exists, depending on what you are going to solve.

These packages need to be downloaded and installed separately, or you choose
to use, e.g., a distribution package like Anaconda.

Here you find an overview of the NumPy library:
https://www.numpy.org

Here you find an overview of the SciPy library:
https://www.scipy.org

Here you find an overview of the Matplotlib library:
https://matplotlib.org

You will learn the basics features in all these libraries. We will use all of the in
different examples and exercises throughout this textbook.

Example 4.5.1. Using libraries

In this example we use the NumPy library:

1 import numpy as np
2

3 x = 3
4

5 y = np . s i n (x)
6

7 pr in t (y)

In this example we use both the math module in the Python Standard Library
and the NumPy library:

1 import math as mt
2 import numpy as np
3

4 x = 3
5

6 y = mt . s i n (x)
7

8 pr in t (y)
9

10

11 y = np . s i n (x)
12

13 pr in t (y)

Note! As seen in this example we use a function called sin() which exists both
in the math module in the Python Standard Library and the NumPy library.
In this case they give the same results. In this case the following code is not
recommended:

1 from math import ∗
2 from numpy import ∗
3

4 x = 3
5

45

6 y = s i n (x)
7

8 pr in t (y)
9

10

11 y = s i n (x)
12

13 pr in t (y)

In this case it works, but assume you have 2 different functions with the same
name that have different meaning in 2 different libraries.

[End of Example]

4.5.1 Python Packages

In addition to the Python Standard Library, there is a growing collection of sev-
eral thousand components (from individual programs and modules to packages
and entire application development frameworks), available from the Python
Package Index.

Python Package Index (PYPI):
https://pypi.org

Here you can download and install individual Python packages.
An easy alternative is the Anaconda Distribution, where many of the most used
Python packages are included.

Anaconda:
https://www.anaconda.com/distribution/

4.6 Plotting in Python

Typically you need to create some plots or charts. In order to make plots or
charts in Python you will need an external library. The most used library is
Matplotlib.

Matplotlib is a Python 2D plotting library

Here you find an overview of the Matplotlib library:
https://matplotlib.org

If you are familiar with MATLAB and basic plotting in MATLAB, using the
Matplotlib is very similar.

The main difference from MATLAB is that you need to import the library,
either the whole library or one or more functions.
For simplicity we import the whole library like this:

1 import matp lo t l i b . pyplot as p l t

46

Plotting functions that you will use a lot:

• plot()

• title()

• xlabel()

• ylabel()

• axis()

• grid()

• subplot()

• legend()

• show()

Lets create some basic plotting examples using the Matplotlib library:

Example 4.6.1. Plotting in Python

In this example we have two arrays with data. We want to plot x vs. y. We
can assume x is a time series and y is the corresponding temperature in degrees
Celsius.

1 import matp lo t l i b . pyplot as p l t
2

3 x = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10]
4

5 y = [5 , 2 ,4 , 4 , 8 , 7 , 4 , 8 , 10 , 9]
6

7 p l t . p l o t (x , y)
8 p l t . x l ab e l (’Time (s) ’)
9 p l t . y l ab e l (’ Temperature (degC) ’)

10 p l t . show ()

We get the plot as shown in Figure 4.3.

We can also write like this:

1 from matp lo t l i b . pyplot import ∗
2

3 x = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10]
4 y = [5 , 2 ,4 , 4 , 8 , 7 , 4 , 8 , 10 , 9]
5

6 p lo t (x , y)
7 x l ab e l (’Time (s) ’)
8 y l ab e l (’ Temperature (degC) ’)
9 show ()

This makes the code simpler to read. one problem with this approach appears
assuming we import and use multiple libraries and the different libraries have
some functions with the same name but different use.

47

Figure 4.3: Plotting in Python

[End of Example]

We have used 4 basic plotting function in the Matplotlib library:

• plot()

• xlabel()

• ylabel()

• show()

Example 4.6.2. Plotting a Sine Curve

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 x = [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]
5

6 y = np . s i n (x)
7

8 p l t . p l o t (x , y)
9 p l t . x l ab e l (’ x ’)

10 p l t . y l ab e l (’ y ’)
11 p l t . show ()

This gives the following plot (see Figure 4.4):

A better solution will then be:

48

Figure 4.4: Plotting a Sine function in Python

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 x s t a r t = 0
5 xstop = 2∗np . p i
6 increment = 0 .1
7

8 x = np . arange (xs tar t , xstop , increment)
9

10 y = np . s i n (x)
11

12 p l t . p l o t (x , y)
13 p l t . x l ab e l (’ x ’)
14 p l t . y l ab e l (’ y ’)
15 p l t . show ()

This gives the following plot (see Figure 4.5):
If you want grids you can use the grid() function.

[End of Example]

4.6.1 Subplots

The subplot command enables you to display multiple plots in the same window.
Typing ”subplot(m,n,p)” partitions the figure window into an m-by-n matrix
of small subplots and selects the subplot for the current plot. The plots are
numbered along the first row of the figure window, then the second row, and so
on. See Figure 4.6.

Example 4.6.3. Creating Subplots

49

Figure 4.5: Plotting a Sine function in Python - Better Implementation

We will create and plot sin() and cos() in 2 different subplots.

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 x s t a r t = 0
5 xstop = 2∗np . p i
6 increment = 0 .1
7

8 x = np . arange (xs tar t , xstop , increment)
9

10 y = np . s i n (x)
11

12 z = np . cos (x)
13

14

15 p l t . subp lot (2 , 1 , 1)
16 p l t . p l o t (x , y , ’ g ’)
17 p l t . t i t l e (’ s i n ’)
18 p l t . x l ab e l (’ x ’)
19 p l t . y l ab e l (’ s i n (x) ’)
20 p l t . g r i d ()
21 p l t . show ()
22

23

24 p l t . subp lot (2 , 1 , 2)
25 p l t . p l o t (x , z , ’ r ’)
26 p l t . t i t l e (’ cos ’)
27 p l t . x l ab e l (’ x ’)
28 p l t . y l ab e l (’ cos (x) ’)
29 p l t . g r i d ()
30 p l t . show ()

[End of Example]

50

Figure 4.6: Creating Subplots in Python

4.6.2 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 4.6.1. Create sin(x) and cos(x) in 2 different plots

Create sin(x) and cos(x) in 2 different plots.

You should use all the Plotting functions listed below in your code:

• plot()

• title()

• xlabel()

• ylabel()

• axis()

• grid()

• legend()

• show()

[End of Exercise]

51

Part II

Python Programming

52

Chapter 5

Python Programming

We have been through the basics in Python, such as variables, using some basic
built-in functions, basic plotting, etc.

You may come far only using these thins, but to create real applications, you
need to know about and use features like:

• If ... Else

• For Loops

• While Loops

• Arrays ...

If you are familiar with one or more other programming language, these fea-
tures should be familiar and known to you. All programming languages have
these features built-in, but the syntax is slightly different from one language to
another.

5.1 If ... Else

An ”if statement” is written by using the if keyword.

Here are some Examples how you use a If sentences in Python:

Example 5.1.1. Using If ... Else in Python

Using If :

1 a = 5
2 b = 8
3

4 i f a > b :
5 pr in t (”a i s g r e a t e r than b”)
6

7 i f b > a :
8 pr in t (”b i s g r e a t e r than a”)
9

10 i f a == b :

53

11 pr in t (”a i s equal to b”)

Listing 5.1: If

Try to change the values for a and b.

Using If - Else:

1 a = 5
2 b = 8
3

4 i f a > b :
5 pr in t (”a i s g r e a t e r than b”)
6 e l s e :
7 pr in t (”b i s g r e a t e r than a or a and b are equal ”)

Listing 5.2: If - Else

Using Elif :

1 a = 5
2 b = 8
3

4 i f a > b :
5 pr in t (”a i s g r e a t e r than b”)
6 e l i f b > a :
7 pr in t (”b i s g r e a t e r than a”)
8 e l i f a == b :
9 pr in t (”a i s equal to b”)

Listing 5.3: Elif

Note! Python uses ”elif” not ”elseif” like many other programming languages
do.

[End of Example]

5.2 Arrays

An array is a special variable, which can hold more than one value at a time.

Here are some Examples how you can create and use Arrays in Python:

Example 5.2.1. Arrays in Python

1 data = [1 . 6 , 3 . 4 , 5 . 5 , 9 . 4]
2

3 N = len (data)
4

5 pr in t (N)
6

7 pr in t (data [2])
8

9 data [2] = 7 .3
10

11 pr in t (data [2])

54

12

13

14 f o r x in data :
15 pr in t (x)
16

17

18 data . append (1 1 . 4)
19

20

21 N = len (data)
22

23 pr in t (N)
24

25

26 f o r x in data :
27 pr in t (x)

Listing 5.4: Using Arrays in Python

You define an array like this:

1 data = [1 . 6 , 3 . 4 , 5 . 5 , 9 . 4]

You can also use text like this:

1 c a r l i s t = [”Volvo” , ”Tes la ” , ”Ford”]

You can use Arrays in Loops like this:

1 f o r x in data :
2 pr in t (x)

You can return the number of elements in the array like this:

1 N = len (data)

You can get a specific value inside the array like this:

1 index = 2
2 x = car s [index]

You can use the append() method to add an element to an array:

1 data . append (1 1 . 4)

[End of Example]

You have many built in methods you can use in combination with arrays, like
sort(), clear(), copy(), count(), insert(), remove(), etc.

You should look into test all these methods.

55

5.3 For Loops

A For loop is used for iterating over a sequence. I guess all your programs will
use one or more For loops. So if you have not used For loops before, make sure
to learn it now.

Below you see a basic example how you can use a For loop in Python:

1 f o r i in range (1 , 10) :
2 pr in t (i)

The For loop is probably one of the most useful feature in Python (or in any
kind of programming language). Below you will see different examples how you
can use a For loop in Python.

Example 5.3.1. Using For Loops in Python

1 data = [1 . 6 , 3 . 4 , 5 . 5 , 9 . 4]
2

3 f o r x in data :
4 pr in t (x)
5

6

7 c a r l i s t = [”Volvo” , ”Tes la ” , ”Ford”]
8

9 f o r car in c a r l i s t :
10 pr in t (car)

Listing 5.5: Using For Loops in Python

The range() function is handy to use in For Loops:

1 N = 10
2

3 f o r x in range (N) :
4 pr in t (x)

The range() function returns a sequence of numbers, starting from 0 by default,
and increments by 1 (by default), and ends at a specified number.

You can also use the range() function like this:

1 s t a r t = 4
2 stop= 12 #but not i n c l ud ing
3

4 f o r x in range (s ta r t , stop) :
5 pr in t (x)

Finally, you can also use the range() function like this:

1 s t a r t = 4
2 stop = 12 #but not i n c l ud ing
3 s tep = 2
4

5 f o r x in range (s ta r t , stop , s tep) :
6 pr in t (x)

56

You should try all these examples in order to learn the basic structure of a For
loop.

[End of Example]

Example 5.3.2. Using For Loops for Summation of Data

You typically want to use a For loop for find the sum of a given data set.

1 data = [1 , 5 , 6 , 3 , 12 , 3]
2

3 sum = 0
4

5 #Find the Sum of a l l the numbers
6 f o r x in data :
7 sum = sum + x
8

9 pr in t (sum)
10

11 #Find the Mean or Average o f a l l the numbers
12

13 N = len (data)
14

15 mean = sum/N
16

17 pr in t (mean)

This gives the following results:

1 30
2 5 .0

[End of Example]

Example 5.3.3. Implementing Fibonacci Numbers Using a For Loop in Python

Fibonacci numbers are used in the analysis of financial markets, in strategies
such as Fibonacci retracement, and are used in computer algorithms such as the
Fibonacci search technique and the Fibonacci heap data structure.
They also appear in biological settings, such as branching in trees, arrangement
of leaves on a stem, the fruitlets of a pineapple, the flowering of artichoke, an
uncurling fern and the arrangement of a pine cone.

In mathematics, Fibonacci numbers are the numbers in the following sequence:
0, 1, 1, 2 ,3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

By definition, the first two Fibonacci numbers are 0 and 1, and each subsequent
number is the sum of the previous two.

Some sources omit the initial 0, instead beginning the sequence with two 1s.

57

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the
recurrence relation

fn = fn−1 + fn−2 (5.1)

with seed values:

f0 = 0, f1 = 1

We will write a Python script that calculates the N first Fibonacci numbers.
The Python Script becomes like this:

1 N = 10
2

3 f i b 1 = 0
4 f i b 2 = 1
5

6 pr in t (f i b 1)
7 pr in t (f i b 2)
8

9 f o r k in range (N−2) :
10 f i b n e x t = f i b 2 +f i b 1
11 f i b 1 = f i b 2
12 f i b 2 = f i b n e x t
13 pr in t (f i b n e x t)

Listing 5.6: Fibonacci Numbers Using a For Loop in Python

Alternative solution:

1 N = 10
2

3 f i b = [0 , 1]
4

5

6 f o r k in range (N−2) :
7 f i b n e x t = f i b [k+1] +f i b [k]
8 f i b . append (f i b n e x t)
9

10 pr in t (f i b)

Listing 5.7: Fibonacci Numbers Using a For Loop in Python - Alt2

Another alternative solution:

1 N = 10
2

3 f i b = []
4

5 f o r k in range (N) :
6 f i b . append (0)
7

8 f i b [0] = 0
9 f i b [1] = 1

10

58

11 f o r k in range (N−2) :
12 f i b [k+2] = f i b [k+1] +f i b [k]
13

14

15 pr in t (f i b)

Listing 5.8: Fibonacci Numbers Using a For Loop in Python - Alt3

Another alternative solution:

1 import numpy as np
2

3

4 N = 10
5

6 f i b = np . z e r o s (N)
7

8 f i b [0] = 0
9 f i b [1] = 1

10

11 f o r k in range (N−2) :
12 f i b [k+2] = f i b [k+1] +f i b [k]
13

14

15 pr in t (f i b)

Listing 5.9: Fibonacci Numbers Using a For Loop in Python - Alt4

[End of Example]

5.3.1 Nested For Loops

In Python and other programming languages you can use one loop inside an-
other loop.

Syntax for nested For loops in Python:

1 f o r i t e r a t i n g v a r in sequence :
2 f o r i t e r a t i n g v a r in sequence :
3 statements (s)
4 statements (s)

Simple example:

1 f o r i in range (1 , 10) :
2 f o r k in range (1 , 10) :
3 pr in t (i , k)

Exercise 5.3.1. Prime Numbers

The first 25 prime numbers (all the prime numbers less than 100) are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97

59

By definition a prime number has both 1 and itself as a divisor. If it has any
other divisor, it cannot be prime.

A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a prime) if
it is greater than 1 and cannot be written as a product of two natural numbers
that are both smaller than it.

Create a Python Script where you find all prime numbers between 1 and 200.

Tip! I guess this can be done in many different ways, but one way is to use 2
nested For Loops.

[End of Exercise]

5.4 While Loops

The while loop repeats a group of statements an indefinite number of times
under control of a logical condition.

Example 5.4.1. Using While Loops in Python

1 m = 8
2

3 whi le m > 2 :
4 pr in t (m)
5 m = m − 1

Listing 5.10: Using While Loops in Python

[End of Example]

5.5 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 5.5.1. Plot of Dynamic System

Given the autonomous system:
ẋ = ax (5.2)

Where:

a = − 1

T

60

where T is the time constant.

The solution for the differential equation is:

x(t) = eatx0 (5.3)

Set T=5 and the initial condition x(0)=1.

Create a Script in Python (.py file) where you plot the solution x(t) in the time
interval:

0 ≤ t ≤ 25

Add Grid, and proper Title and Axis Labels to the plot.

[End of Exercise]

61

Chapter 6

Creating Functions in
Python

6.1 Introduction

A function is a block of code which only runs when it is called. You can pass
data, known as parameters, into a function. A function can return data as a
result.

Previously we have been using many of the built-in functions in Python

If you are familiar with one or more other programming language, creating and
using functions should be familiar and known to you. All programming lan-
guages has the possibility to create functions, but the syntax is slightly different
from one language to another.

Some programming languages uses the term Method instead of a Function.
Functions and Methods behave in the same manner, but you could say that
Methods are functions that belongs to a Class. We will learn more about Classes
in Chapter 7.

Scripts vs. Functions

It is important to know the difference between a Script and a Function.

Scripts:

• A collection of commands that you would execute in the Editor

• Used for automating repetitive tasks

Functions:

• Operate on information (inputs) fed into them and return outputs

• Have a separate workspace and internal variables that is only valid inside
the function

62

• Your own user-defined functions work the same way as the built-in func-
tions you use all the time, such as plot(), rand(), mean(), std(), etc.

Python have lots of built-in functions, but very often we need to create our own
functions (we could refer to these functions as user-defined functions)
In Python a function is defined using the def keyword:

1 de f FunctionName :
2 <statement−1>
3 .
4 .
5 <statement−N>
6 r e turn . . .

Example 6.1.1. Basic Function

Below you see a simple function created in Python:

1 de f add (x , y) :
2

3 r e turn x + y

Listing 6.1: Basic Python Function

The function adds 2 numbers. The name of the function is add, and it returns
the answer using the return statement.

The statement return [expression] exits a function, optionally passing back an
expression to the caller. A return statement with no arguments is the same as
return None.

Note that you need to use a colon ”:” at the end of line where you define the
function.

Note also the indention used.

1 de f add (x , y) :

Here you see a Python script where we use the function:

1 de f add (x , y) :
2

3 r e turn x + y
4

5

6 x = 2
7 y = 5
8

9 z = add (x , y)
10

11 pr in t (z)

Listing 6.2: Creating and Using a Python Function

63

[End of Example]

Example 6.1.2. Create a Function in a separate File

We start by creating a separate Python File (myfunctions.py) for the function:

1 de f average (x , y) :
2

3 r e turn (x + y) /2

Listing 6.3: Function calculating the Average

Next, we create a new Python File (e.g., testaverage.py) where we use the
function we created:

1 from myfunctions import average
2

3 a = 2
4 b = 3
5

6 c = average (a , b)
7

8 pr in t (c)

Listing 6.4: Test of Average function

[End of Example]

6.2 Functions with multiple return values

Typically we want to return more than one value from a function.

Example 6.2.1. Create a Function Function with multiple return values

Create the following example:

1 de f s t a t (x) :
2

3 totalsum = 0
4

5 #Find the Sum of a l l the numbers
6 f o r x in data :
7 totalsum = totalsum + x
8

9

10 #Find the Mean or Average o f a l l the numbers
11

12 N = len (data)
13

14 mean = totalsum/N
15

16

17 r e turn totalsum , mean
18

19

20

64

21 data = [1 , 5 , 6 , 3 , 12 , 3]
22

23

24 totalsum , mean = s t a t (data)
25

26 pr in t (totalsum , mean)

Listing 6.5: Function with multiple return values

[End of Example]

6.3 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 6.3.1. Create Python Function

Create a function calcaverage that finds the average of two numbers.

[End of Exercise]

Exercise 6.3.2. Create Python functions for converting between radians and
degrees

Since most of the trigonometric functions require that the angle is expressed in
radians, we will create our own functions in order to convert between radians
and degrees.

It is quite easy to convert from radians to degrees or from degrees to radians.

We have that:

2π[radians] = 360[degrees] (6.1)

This gives:

d[degrees] = r[radians]× (
180

π
) (6.2)

and

r[radians] = d[degrees]× (
π

180
) (6.3)

Create two functions that convert from radians to degrees (r2d(x)) and from
degrees to radians (d2r(x)) respectively.

These functions should be saved in one Python file .py.

Test the functions to make sure that they work as expected.

65

[End of Exercise]

Exercise 6.3.3. Create a Function that Implementing Fibonacci Numbers

Fibonacci numbers are used in the analysis of financial markets, in strategies
such as Fibonacci retracement, and are used in computer algorithms such as the
Fibonacci search technique and the Fibonacci heap data structure.
They also appear in biological settings, such as branching in trees, arrangement
of leaves on a stem, the fruitlets of a pineapple, the flowering of artichoke, an
uncurling fern and the arrangement of a pine cone.

In mathematics, Fibonacci numbers are the numbers in the following sequence:
0, 1, 1, 2 ,3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

By definition, the first two Fibonacci numbers are 0 and 1, and each subsequent
number is the sum of the previous two.

Some sources omit the initial 0, instead beginning the sequence with two 1s.

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the
recurrence relation

fn = fn−1 + fn−2 (6.4)

with seed values:

f0 = 0, f1 = 1

Create a Function that Implementing the N first Fibonacci Numbers

[End of Exercise]

Exercise 6.3.4. Prime Numbers

The first 25 prime numbers (all the prime numbers less than 100) are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97

By definition a prime number has both 1 and itself as a divisor. If it has any
other divisor, it cannot be prime.

A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a prime) if
it is greater than 1 and cannot be written as a product of two natural numbers
that are both smaller than it.

Tip! I guess this can be implemented in many different ways, but one way is to
use 2 nested For Loops.

66

Create a Python function where you check if a given number is a prime number
or not.

You can check the function in the Command Window like this:

1 number = 4
2 check i fp r ime (number)

Then Python respond with True or False.

[End of Exercise]

67

Chapter 7

Creating Classes in Python

7.1 Introduction

Python is an object oriented programming (OOP) language. Almost everything
in Python is an object, with its properties and methods.

The foundation for all object oriented programming (OOP) languages are Classes.

To create a class, use the keyword class:

1 c l a s s ClassName :
2 <statement−1>
3 .
4 .
5 .
6 <statement−N>

Example 7.1.1. Simple Class Example

We will create a simple Class in Python.

1 c l a s s Car :
2 model = ”Volvo”
3 c o l o r = ”Blue”
4

5

6 car = Car ()
7

8

9 pr in t (car . model)
10 pr in t (car . c o l o r)

Listing 7.1: Simple Python Class

The results will be in this case:

1 Volvo
2 Blue

68

This example don’t illustrate the good things with classes so we will create some
more examples.

[End of Example]

Example 7.1.2. Python Class

Lets create the following Python Code:

1 c l a s s Car :
2 model = ””
3 c o l o r = ””
4

5 car = Car ()
6

7 car . model = ”Volvo”
8 car . c o l o r = ”Blue”
9

10 pr in t (car . c o l o r + ” ” + car . model)
11

12 car . model = ”Ford”
13 car . c o l o r = ”Green”
14

15 pr in t (car . c o l o r + ” ” + car . model)

Listing 7.2: Python Class example

You should try these examples.

[End of Example]

7.2 The init () Function

In Python all classes have a built-in function called init (), which is always
executed when the class is being initiated.
In many other OOP languages we call this the Constructor.

Exercise 7.2.1. The init () Function

We will create a simple example where we use the init () function to illustrate
the principle.

We change our previous Car example like this:

1 c l a s s Car :
2 de f i n i t (s e l f , model , c o l o r) :
3 s e l f . model = model
4 s e l f . c o l o r = co l o r
5

6 car1 = Car (”Ford” , ”Green”)
7

8 pr in t (car1 . model)
9 pr in t (car1 . c o l o r)

10

11

69

12 car2 = Car (”Volvo” , ”Blue”)
13

14 pr in t (car2 . model)
15 pr in t (car2 . c o l o r)

Listing 7.3: Python Class Constructor Example

Lets extend the Class by defining a Function as well:

1 # Def in ing the Class Car
2 c l a s s Car :
3 de f i n i t (s e l f , model , c o l o r) :
4 s e l f . model = model
5 s e l f . c o l o r = co l o r
6

7 de f d i sp layCar (s e l f) :
8 pr in t (s e l f . model)
9 pr in t (s e l f . c o l o r)

10

11

12 # Lets s t a r t us ing the Class
13

14 car1 = Car (”Tesla ” , ”Red”)
15

16 car1 . d i sp layCar ()
17

18

19 car2 = Car (”Ford” , ”Green”)
20

21 pr in t (car2 . model)
22 pr in t (car2 . c o l o r)
23

24

25 car3 = Car (”Volvo” , ”Blue”)
26

27 pr in t (car3 . model)
28 pr in t (car3 . c o l o r)
29

30 car3 . c o l o r=”Black”
31

32 car3 . d i sp layCar ()

Listing 7.4: Python Class with Function

As you see from the code we have now defined a Class ”Car” that has 2 Class
variables called ”model” and ”color”, and in addition we have defined a Func-
tion (or Method) called ”displayCar()”.

Its normal to use the term ”Method” for Functions that are defined within a
Class.

You declare class methods like normal functions with the exception that the
first argument to each method is self.

To create instances of a class, you call the class using class name and pass in
whatever arguments its init () method accepts.

For example:

70

1 car1 = Car (”Tesla ” , ”Red”)

[End of Example]

Exercise 7.2.2. Create the Class in a separate Python file

We start by creating the Class and then we save the code in ”Car.py”:

1 # Def in ing the Class Car
2 c l a s s Car :
3 de f i n i t (s e l f , model , c o l o r) :
4 s e l f . model = model
5 s e l f . c o l o r = co l o r
6

7 de f d i sp layCar (s e l f) :
8 pr in t (s e l f . model)
9 pr in t (s e l f . c o l o r)

Listing 7.5: Define Python Class in separate File

Then we create a Python Script (testCar.py) where we are using the Class:

1 # Importing the Car Class
2 from Car import Car
3

4 # Lets s t a r t us ing the Class
5

6 car1 = Car (”Tesla ” , ”Red”)
7

8 car1 . d i sp layCar ()
9

10

11 car2 = Car (”Ford” , ”Green”)
12

13 pr in t (car2 . model)
14 pr in t (car2 . c o l o r)
15

16

17 car3 = Car (”Volvo” , ”Blue”)
18

19 pr in t (car3 . model)
20 pr in t (car3 . c o l o r)
21

22 car3 . c o l o r=”Black”
23

24 car3 . d i sp layCar ()

Listing 7.6: Script that is using the Class

Notice the following line at the top:

1 from Car import Car

[language=Python]

[End of Example]

71

7.3 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 7.3.1. Create Python Class

Create a Python Class where you calculate the degrees in Fahrenheit based on
the temperature in Celsius and vice versa.

The formula for converting from Celsius to Fahrenheit is:

Tf = (Tc × 9/5) + 32 (7.1)

The formula for converting from Fahrenheit to Celsius is:

Tc = (Tf − 32)× (5/9) (7.2)

[End of Exercise]

72

Chapter 8

Creating Python Modules

As your program gets longer, you may want to split it into several files for easier
maintenance. You may also want to use a handy function that you have written
in several programs without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them
in a script or in an interactive instance of the interpreter (the Python Console
window).

8.1 Python Modules

A module is a file containing Python definitions and statements. The file name
is the module name with the suffix .py appended.

Python allows you to split your program into modules that can be reused in
other Python programs. It comes with a large collection of standard modules
that you can use as the basis of your programs as we have seen examples of in
previous chapters. Not it is time to make your own modules from scratch.

Consider a module to be the same as a code library. A file containing a set of
functions you want to include in your application.

Previously you have been using different modules, libraries or packages created
by the Python organization or by others. Here you will create your own modules
from scratch.

Example 8.1.1. Create your first Python Module

We will create a Python module with 2 functions. The first function should
convert from Celsius to Fahrenheit and the other function should convert from
Fahrenheit to Celsius.

The formula for converting from Celsius to Fahrenheit is:

Tf = (Tc × 9/5) + 32 (8.1)

73

The formula for converting from Fahrenheit to Celsius is:

Tc = (Tf − 32)× (5/9) (8.2)

First, we create a Python module with the following functions (fahrenheit.py):

1 de f c2 f (Tc) :
2

3 Tf = (Tc ∗ 9/5) + 32
4 r e turn Tf
5

6

7 de f f 2 c (Tf) :
8

9 Tc = (Tf − 32) ∗ (5/9)
10 r e turn Tc

Listing 8.1: Fahrenheit Functions

Then, we create a Python script for testing the functions (testfahrenheit.py):

1 from fah r enhe i t import c2f , f 2 c
2

3 Tc = 0
4

5 Tf = c2 f (Tc)
6

7 pr in t (”Fahrenheit : ” + s t r (Tf))
8

9

10 Tf = 32
11

12 Tc = f2c (Tf)
13

14 pr in t (” Ce l s i u s : ” + s t r (Tc))

Listing 8.2: Python Script testing the functions

The results becomes:

1 Fahrenheit : 32 .0
2 Ce l s i u s : 0 . 0

8.2 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 8.2.1. Create Python Module for converting between radians and
degrees

Since most of the trigonometric functions require that the angle is expressed in
radians, we will create our own functions in order to convert between radians

74

and degrees.

It is quite easy to convert from radians to degrees or from degrees to radians.
We have that:

2π[radians] = 360[degrees] (8.3)

This gives:

d[degrees] = r[radians]× (
180

π
) (8.4)

and

r[radians] = d[degrees]× (
π

180
) (8.5)

Create two functions that convert from radians to degrees (r2d(x)) and from
degrees to radians (d2r(x)) respectively.

These functions should be saved in one Python file .py.

Test the functions to make sure that they work as expected. You can choose to
make a new .py file to test these functions or you can use the Console window.

[End of Exercise]

75

Chapter 9

File Handling in Python

9.1 Introduction

Python has several functions for creating, reading, updating, and deleting files.
The key function for working with files in Python is the open() function.

The open() function takes two parameters; Filename, and Mode.

There are four different methods (modes) for opening a file:

• ”x” - Create - Creates the specified file, returns an error if the file exists

• ”w” - Write - Opens a file for writing, creates the file if it does not exist

• ”r” - Read - Default value. Opens a file for reading, error if the file does
not exist

• ”a” - Append - Opens a file for appending, creates the file if it does not
exist

In addition you can specify if the file should be handled as binary or text mode

• ”t” - Text - Default value. Text mode

• ”b” - Binary - Binary mode (e.g. images)

9.2 Write Data to a File

To create a New file in Python, use the open() method, with one of the following
parameters:

• ”x” - Create - Creates the specified file, returns an error if the file exists

• ”w” - Write - Opens a file for writing, creates the file if it does not exist

• ”a” - Append - Opens a file for appending, creates the file if it does not
exist

76

To write to an Existing file, you must add a parameter to the open() function:

• ”w” - Write - Opens a file for writing, creates the file if it does not exist

• ”a” - Append - Opens a file for appending, creates the file if it does not
exist

Example 9.2.1. Write Data to a File

1 f = open (”myf i l e . txt ” , ”x”)
2

3 data = ”Helo World”
4

5 f . wr i t e (data)
6

7 f . c l o s e ()

Listing 9.1: Write Data to a File

[End of Example]

9.3 Read Data from a File

To read to an existing file, you must add the following parameter to the open()
function:

• ”r” - Read - Default value. Opens a file for reading, error if the file does
not exist

Example 9.3.1. Read Data from a File

1 f = open (”myf i l e . txt ” , ” r ”)
2

3 data = f . read ()
4

5 pr in t (data)
6

7 f . c l o s e ()

Listing 9.2: Read Data from a File

[End of Example]

9.4 Logging Data to File

Typically you want to write multiple data to the, e.g., assume you read some
temperature data at regular intervals and then you want to save the temperature
values to a File.

Example 9.4.1. Logging Data to File

77

1 data = [1 . 6 , 3 . 4 , 5 . 5 , 9 . 4]
2

3 f = open (”myf i l e . txt ” , ”x”)
4

5 f o r va lue in data :
6 r ecord = s t r (va lue)
7 f . wr i t e (record)
8 f . wr i t e (”\n”)
9

10 f . c l o s e ()

Listing 9.3: Logging Data to File

[End of Example]

Example 9.4.2. Read Logged Data from File

1 f = open (”myf i l e . txt ” , ” r ”)
2

3 f o r record in f :
4 r ecord = record . r ep l a c e (”\n” , ””)
5 pr in t (record)
6

7 f . c l o s e ()

Listing 9.4: Read Logged Data from File

[End of Example]

9.5 Web Resources

Below you find different useful resources for File Handling.

Python File Handling - w3school:
https://www.w3schools.com/python/pythonf ilehandling.asp

Reading and Writing Files - python.org:
https://docs.python.org/3/tutorial/inputoutput.htmlreading-and-writing-files

9.6 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 9.6.1. Data Logging

Assume you have the following data you want to log to a File as shown in Table
9.1.
Log these data to a File.

Create another Python Script that reads the same data.

78

[End of Exercise]

Exercise 9.6.2. Data Logging 2

Assume you read data from a Temperature sensor every 10 seconds for a period
of let say 5 minutes.

Log the data to a File.

You can use the Random Generator in Python. An example of how to use the
Random Generator is shown below:

1 import random
2 f o r x in range (10) :
3 data = random . rand int (1 , 31)
4 pr in t (data)

Listing 9.5: Read Data from a File

Make sure to log both the time and the temperature value

Create another Python Script that reads the same data.

You should also plot the data you read from the File.

[End of Exercise]

79

Table 9.1: Logged Data
Time Value
1 22
2 25
3 28
... ...

80

Chapter 10

Error Handling in Python

10.1 Introduction to Error Handling

So far error messages haven’t been discussed. You could say that we have 2
kinds of errors: syntax errors and exceptions.

10.1.1 Syntax Errors

Below we see an example of syntax errors:

1 >>> pr in t (He l lo World)
2 F i l e ”<ipython−input−1−10cb182148e3>” , l i n e 1
3 pr in t (He l lo World)
4 ˆ
5 SyntaxError : i n v a l i d syntax

In the example we have written print(Hello World) instead of print(”Hello
World”) and then the Python Interpreter gives us an error message.

10.1.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error
when an attempt is made to execute it. Errors detected during execution are
called exceptions and are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are not handled by programs,
however, and result in error messages as shown here:

1 >>> 10 ∗ (1/0)
2 Traceback (most r e c en t c a l l l a s t) :
3

4 F i l e ”<ipython−input−2−0b280f36835c>” , l i n e 1 , in <module>
5 10 ∗ (1/0)
6

7 ZeroDiv i s i onErro r : d i v i s i o n by zero

or:

1 >>> ’ 2 ’ + 2
2 Traceback (most r e c en t c a l l l a s t) :
3

81

4 F i l e ”<ipython−input−3−d2b23a1db757>” , l i n e 1 , in <module>
5 ’ 2 ’ + 2
6

7 TypeError : must be s t r , not i n t

10.2 Exceptions Handling

It is possible to write programs that handle selected exceptions.

In Python we can use the following built-in Exceptions Handling features:

• The try block lets you test a block of code for errors.

• The except block lets you handle the error.

• The finally block lets you execute code, regardless of the result of the try-
and except blocks.

When an error occurs, or exception as we call it, Python will normally stop and
generate an error message.

These exceptions can be handled using the try - except statements.

Some basic example:

1 t ry :
2 10 ∗ (1/0)
3 except :
4 pr in t (”The c a l c u l a t i o n f a i l e d ”)

or:

1 t ry :
2 pr in t (x)
3 except :
4 pr in t (”x i s not de f ined ”)

You can also use multiple exceptions:

1 t ry :
2 pr in t (x)
3 except NameError :
4 pr in t (”x i s not de f ined ”)
5 except :
6 pr in t (”Something i s wrong”)

The finally block, if specified, will be executed regardless if the try block raises
an error or not.

Example:

82

1 x=2
2

3 t ry :
4 pr in t (x)
5 except NameError :
6 pr in t (”x i s not de f ined ”)
7 except :
8 pr in t (”Something i s wrong”)
9 f i n a l l y :

10 pr in t (”The Program i s f i n i s h e d ”)

In general you should use try - except - finally when you try to open a File, read
or write to Files, connect to a Database, etc.

Example:

1 t ry :
2 f = open (”myf i l e . txt ”)
3 f . wr i t e (”Lorum Ipsum”)
4 except :
5 pr in t (”Something went wrong when wr i t i ng to the f i l e ”)
6 f i n a l l y :
7 f . c l o s e ()

83

Chapter 11

Debugging in Python

Debugging is the process of finding and resolving defects or problems within
a computer program that prevent correct operation of computer software or a
system [14].

Debuggers are software tools which enable the programmer to monitor the ex-
ecution of a program, stop it, restart it, set breakpoints, and change values in
memory. The term debugger can also refer to the person who is doing the de-
bugging.

As a programmer, one of the first things that you need for serious program
development is a debugger.

Python has a built-in debugger that can be used if you are coding Python with
a basic text editor and running your Python programs from the command line.

A better option is to use the Debugging features integrated in your Python Ed-
itor. Debugging is typically integrated with the Python Editor you are using.

See the specific chapter for the different Python Editors.

84

Chapter 12

Installing and using Python
Packages

A package contains all the files you need for a module. Modules are Python
code libraries you can include in your project.

Since Python is open source you can find thousands of Python Packages that
you can install and use in your Python programs.

You can use a Python Distribution like Anaconda Distribution (or similar
Python Distributions) to download and install many common Python Pack-
ages as mentioned previously.

12.1 What is PIP?

PIP is a package manager for Python packages, or modules if you like. PIP is
a tool for installing Python packages.

If you do not have PIP installed, you can download and install it from this page:
https://pypi.org/project/pip/

PIP is typically used from the Command Prompt (Windows) or Terminal win-
dow (macOS).

Installing Python Packages:

1 pip i n s t a l l packagename

Uninstalling Python Packages:

1 pip u n i n s t a l l packagename

Some Python Editors also have a graphical way of installing Python Packages,
like, e.g., Visual Studio.

85

Part III

Python Environments and
Distributions

86

Chapter 13

Introduction to Python
Environments and
Distributions

Python comes with many flavours and version.

Python is open source and everybody can bundle and distribute Python and
different Python Packages.

A Python environment is a context in which you run Python code and includes
Python Packages.

An environment consists of an interpreter, a library (typically the Python Stan-
dard Library), and a set of installed packages.

These components together determine which language constructs and syntax
are valid, what operating-system functionality you can access, and which pack-
ages you can use.

You can have multiple Python Environments on your Computer.

Some of them are:

• CPython distribution available from python.org

• Anaconda

• Enthought Canopy

• WinPython

• etc.

It is easy to start using Python by installing one of these Python Distributions.

87

But you can also install the core Python from:
https://www.python.org

Then install the additional Python Packages you need by using PIP.
https://pypi.org/project/pip/

13.1 Package and Environment Managers

The two most popular tools for installing Python Packages and setting up
Python environments are:

• PIP - a Python Package Manager

• Conda - a Package and Environment Manager (for Python and other lan-
guages)

13.1.1 PIP

Web:
https://pypi.org

PIP is typically used from the Command Prompt (Windows) or Terminal win-
dow (macOS).

Installing Python Packages:

1 pip i n s t a l l packagename

Uninstalling Python Packages:

1 pip u n i n s t a l l packagename

13.1.2 Conda

Conda is an open source package management system and environment man-
agement system that runs on Windows, macOS and Linux. Conda installs, runs
and updates packages and their dependencies.

The Conda package and environment manager is included in all versions of Ana-
conda.

Conda was created for Python programs, but it can package and distribute soft-
ware for any language.

Conda allows you to to also create separate environments containing files, pack-
ages and their dependencies that will not interact with other environments.

88

Web:
https://conda.io/

Conda is part of or integrated with the Anaconda Python Distribution.

Web:
https://www.anaconda.com

13.2 Python Virtual Environments

Python ”Virtual Environments” allow Python packages to be installed in an
isolated location for a particular application, rather than being installed glob-
ally.

You can have multiple Python Environments on your computer.

Python Virtual Environments have their own installation directories and they
don’t share libraries with other virtual environments.

Python ”Virtual Environments” is handy when you have different Python appli-
cations that needs different versions of Python or different version of the Python
Packages you are using.

89

Chapter 14

Anaconda

Anaconda is not an Editor, but a Python Distribution package. Spyder is in-
cluded in the Python Distribution package. You can also use Anaconda to install
other Editors or Python packages.

It is available for Windows, macOS and Linux.

Web:
https://www.anaconda.com

Wikipedia:
https://en.wikipedia.org/wiki/Anaconda(Pythondistribution)

14.1 Anaconda Navigator

Anaconda Navigator is a desktop graphical user interface (GUI) included in
Anaconda distribution that allows users to launch applications and manage
Python packages. The Anaconda Navigator can search for packages and install
them on your computer, run the packages and update them.

Figure 14.1 shows the Anaconda Navigator.

14.2 Anaconda Prompt

You can use the Anaconda Prompt if you need to install extra Python packages,
etc.

Let say you want to install the Python Control Systems Library package. Just
enter the following in the Anaconda Prompt:

pip i n s t a l l c on t r o l

90

Figure 14.1: Anaconda Navigator

Python Package Index, or just pip, is a tool used to handle and install Python
packages.

For for information about pip and different packages you can install, see the
following:

https://pypi.org
Figure 14.2 shows where you can find the Anaconda Prompt. Windows: Search
for Anaconda Prompt in the Search field in the start menu.

91

Figure 14.2: Anaconda Navigator

92

Chapter 15

Enthought Canopy

Enthought Canopy is a Python Platform or Python Distribution for Scientists
and Engineers.

It is available for Windows, macOS and Linux.

Canopy is freely available to all users under the Canopy license. Canopy pro-
vides access to several hundreds Python packages, including NumPy, SciPy,
Pandas, Matplotlib, and IPython.

In addition, we have the Canopy Python Editor.

Enthought Canopy is a competitor to the Anaconda Python Distribution. It is
a matter of taste who you prefer.

Web:
https://www.enthought.com/product/canopy/

93

Part IV

Python Editors

94

Chapter 16

Python Editors

An Editor is a program where you create your code (and where you can run
and test it). Most Editors have also features for Debugging and IntelliSense.

In theory, you can use Windows Notepad for creating Python programs, but
in practice it is impossible to create programs without having an editor with
Debugging, IntelliSense, color formatting, etc.

For simple Python programs you can use the IDLE Editor, but for more ad-
vanced programs a better editor is recommended.

Examples of Python Editors:

• Spyder

• Visual Studio Code

• Visual Studio

• PyCharm

• Wing

• JupyterNotebook

We will give an overview of these Code Editors in the next chapters.

I guess hundreds of different editors can be used for Python Programming, ei-
ther out of the box or if you install an additional Extension that makes sure
you can use Python in that editor.

If you already have a favorite Code Editor, it is a good change you can use that
one for Python programming.

Which editor you should use depends on your background, what kind of code
editors you have used previously, your programming skills, what your are going
to develop in Python, etc.

95

If you are familiar with MATLAB, Spyder is recommended. Also, if you want
to use Python for numerical calculations and computations, Spyder is a good
choice.

If you want to create Web Applications or other kinds of Applications, other
Editors are probably better to use.

For a list of ”Best Python Editors”, see [15].

96

Chapter 17

Spyder

Spyder - short for ”Scientific PYthon Development EnviRonment”.

Spyder is an open source cross-platform integrated development environment(IDE)
for scientific programming in the Python language.

Figure 17.1: Spyder Editor

The Spyder editor consists of the following parts or windows:

• Code Editor window

• iPython Console window

97

• Variable Explorer

• etc.

Web:
https://www.spyder-ide.org

If you have used MATLAB previously or want to use Python for scientific use,
Spyder is a good choice. it is easy to install using the Anaconda Distribution.

Web:
https://www.anaconda.com

17.1 Configuration

Typically you want to show figures and plots in separate windows.

Select Tools-Preferences as shown in Figure 17.2.

Figure 17.2: Python Tools-Preferences

Then select ”Automatic” as shown in Figure 17.3.

98

Figure 17.3: Python Preferences window

99

Chapter 18

Visual Studio Code

18.1 Introduction to Visual Studio Code

Visual Studio Code is a simple and easy to use editor that can be used for many
different programming languages.

Figure 18.1: Using Visual Studio Code as Python Editor

Right-Click and select ”Run Python File in Terminal”

Web:
https://code.visualstudio.com

Wikipedia:
https://en.wikipedia.org/wiki/VisualStudioCode

100

18.2 Python in Visual Studio Code

In addition to Visual Studio Code you need to install the Python extension for
Visual Studio Code.

You must install a Python interpreter yourself separately from the extension.
For a quick install, use Python from python.org.

https://www.python.org

Python is an interpreted language, and in order to run Python code and get
Python IntelliSense within Visual Studio Code, you must tell Visual Studio
Code which interpreter to use.

Web:
https://code.visualstudio.com/docs/languages/python

101

Chapter 19

Visual Studio

19.1 Introduction to Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from
Microsoft. It is used to develop computer programs, as well as websites, web
apps, web services and mobile apps. The default (main) programming language
in Visual studio is C, but many other programming languages are supported.

You could say Visual Studio is the big brother of Visual Studio Code.

Visual studio is available for Windows and macOS.

Visual Studio (from 2017), has integrated support for Python, it is called
”Python Support in Visual Studio”.

Web:
https://visualstudio.microsoft.com

Wikipedia:
https://en.wikipedia.org/wiki/MicrosoftV isualStudio

Go to my Web Site to learn more about Visual Studio and C programming:
https://www.halvorsen.blog/

Visual Studio and C:
https://www.halvorsen.blog/documents/programming/csharp/

19.2 Work with Python in Visual Studio

Work with Python in Visual Studio:
https://docs.microsoft.com/visualstudio/python/

102

Figure 19.1: Using Visual Studio as Python Editor

19.2.1 Make Visual Studio ready for Python Program-
ming

Visual Studio is mainly for Windows. A MacOS version of Visual Studio do
exists, but it has lot less features than the Windows edition.

Note that Python support is available only on Visual Studio for Windows. If
you use Mac and Linux, you need to use Visual Studio Code. You could say
Visual Studio Code is a down-scaled version of Visual Studio.

Visual Studio (from 2017), has integrated support for Python, it is called
”Python Support in Visual Studio”. Even if it is integrated, you need to manu-
ally select which components you want to install on your computer. Make sure
to download and run the latest Visual Studio 2017 installer for Windows.

when you run the Visual Studio installer (either for the first time or if you
already have installed Visual Studio 2017 and want to modify it) the window
shown in Figure 19.2 pops up.
The installer presents you with a list of so called workloads, which are groups of
related options for specific development areas. For Python, select the ”Python
development” workload and select Install (Figure 19.3).

19.2.2 Python Interactive

To quickly test Python support, launch Visual Studio, press Alt+I (or select
from the menu: Tools - Python - Python Interactive Window) to open the
Python Interactive window. See Figure 19.4.

Lets write something like this:

1 >>> a = 2

103

Figure 19.2: Installing Python Extension for Visual Studio

Figure 19.3: Python Development Workload

2 >>> b = 5
3 >>> x = 3
4 >>> y = a∗x + b
5 >>> y

19.2.3 New Python Project

Lets see how we can create a Python Application.

Start by select from the menu: File - New - Project... The New Project window
pops up. See Figure 19.5.
We can create an ordinary Python Application (one or more Python Scripts),
we can choose to create a Web Application using either Web Frameworks like
Django or Flask, or we can create different Desktop GUI applications. We can
also create Games.

Example 19.2.1. Python Hello World Application in Visual Studio

104

Figure 19.4: Python Interactive

We start by creating a basic Hello World Python Application. See Figure 19.1.
Select File - New - Project... The New Project window pops up. See Figure 19.5.

Name the project, e.g, ”PythonApplication1”.
In the Project Explorer, open the ”PythonApplication1.py” file and enter the
following Python code:

1 pr in t (”He l lo World”)

Hit F5 (our click the green arrow) in order to run or execute the Python program.
You can also right click on the file and select ”Start without Debugging”.

[End of Example]

Example 19.2.2. Visual Studio Python Plotting

Create a new Python File by right click in the Solution Explorer and select Add
- New Item... and then select ”Empty Python File”.

Enter the following Python Code:

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 x s t a r t = 0
5 xstop = 2∗np . p i
6 increment = 0 .1
7

8 x = np . arange (xs tar t , xstop , increment)
9

10 y = np . s i n (x)
11

12 p l t . p l o t (x , y)
13 p l t . t i t l e (’ y=s i n (x) ’)

105

Figure 19.5: New Python Project

14 p l t . x l ab e l (’ x ’)
15 p l t . y l ab e l (’ y ’)
16 p l t . g r i d ()
17 p l t . ax i s ([0 , 2∗np . pi , −1, 1])
18 p l t . show ()

See also Figure 19.6.
Make sure to select proper Python Environment. See Figure (19.7). Visual
Studio supports multiple Python Environments.

In this example we use the Matplotlib package for plotting, so we need to have
that package installed on the computer. You can install the Matplotlib package
in different Python Environments.

I have installed the Matplotlib package as part of the Anaconda distribution
setup, so I select ”Anaconda x.x.x” in the Python Environments window.

If you haven’t installed the Matplotlib package yet (either as part of Anaconda
or manually using PIP), you can also easily install Python packages from Visual
studio. See Figure 19.8.

You can also easily see which Python Packages that are installed for the differ-
ent Python Environments. See Figure 19.9.

106

Figure 19.6: Python Plotting Example with Visual Studio

The good thing about using Visual Studio is that you have a graphical user
interface for everything, you don’t need to use the Command window etc. for
installing Python Packages, etc.
Hit F5 (our click the green arrow) in order to run or execute the Python program.
You can also right click on the file and select ”Start without Debugging”.
We get the following results, see Figure 19.10.

[End of Example]

107

Figure 19.7: Select your Python Environment

Figure 19.8: Install Python Packages from Visual Studio

108

Figure 19.9: Installing Python Packages for different Python Environments from
Visual Studio

Figure 19.10: Python Plotting Example with Visual Studio

109

Chapter 20

PyCharm

PyCharm is cross-platform, with Windows, macOS and Linux versions. The
Community Edition is free to use, while the Professional Edition (paid version)
has some extra features.

The PyCharm Editor is shown in Figure 20.1.

Figure 20.1: PyCharm Python Editor

Web:
https://www.jetbrains.com/pycharm/

Wikipedia:
https://en.wikipedia.org/wiki/PyCharm

Anaconda and JetBrains also have a collaboration and offer what they call Py-
Charm for Anaconda. You can download it here:

110

https://www.jetbrains.com/pycharm/promo/anaconda/

We have code editors like Visual Studio and Visual Studio Code which can be
used for many different programming languages by installing different types of
plugins.

Editors like Spyder and PyCharm are tailor-made editors for the Python lan-
guage.

Spyder is light-weight IDE typically used for scientific use. PyCharm on the
other hand is full-blown IDE for software development in general by using the
Python language. It supports many plugins, it’s easier to program Django, etc.

111

Chapter 21

Wing Python IDE

The Wing Python IDE family of integrated development environments (IDEs)
from Wingware were created specifically for the Python programming language.

3 different version of Wing exists [12]:

• Wing 101 – a very simplified free version, for teaching beginning pro-
grammers

• Wing Personal – free version that omits some features, for students and
hobbyists

• Wing Pro – a full-featured commercial (paid) version, for professional
programmers

Figure 21.1: Wing Python IDE

Web:
https://wingware.com

112

Wikipedia:
https://en.wikipedia.org/wiki/WingIDE

113

Chapter 22

Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to cre-
ate and share documents that contain live code, equations, visualizations and
text.

The Notebook has support for over 40 programming languages, including Python.

Figure 22.1: Jupyter Notebook [16]

Web:
http://jupyter.org

Wikipedia:
https://en.wikipedia.org/wiki/ProjectJupyter

114

22.1 JupyterHub

JupyterHub is a multi-user version of the notebook designed for companies,
classrooms and research labs [17].

JupyterHub runs in the cloud or on your own hardware.

JupyterHub is open-source and designed to be run on a variety of infrastructure.
This includes commercial cloud providers, virtual machines, or even your own
laptop hardware.

Web:
http://jupyter.org/hub

22.2 Microsoft Azure Notebooks

Microsoft Azure Notebooks is a version of Jupyter Notebook from Microsoft.

The good thing about Microsoft Azure Notebooks is that you have the infras-
tructure and everything up and running ready for you to use. You can use it
for free as well.

Web:
https://notebooks.azure.com

Example 22.2.1. Example Name

Figure 22.2 shows an overview of my Azure Notebook Projects.

Figure 22.2: Azure Notebook Projects

Figure 22.3 shows an overview of my Azure Notebook Project Notebooks.

Figure 22.4 shows an example of a simple Notebook.

[End of Example]

115

Figure 22.3: Azure Notebook Project Notebooks

Figure 22.4: Azure Notebook Example

116

Part V

Data Acquisition (DAQ)
with Python

117

Chapter 23

Plotting Sensor Data

23.1 Introduction

Typically we want to plot the data from the sensor. We can plot save the data
in an array and then plot the data at the end of the program, but more likely
we want to plot one value at the time inside the loop, so-called ”Real-Time
plotting”.

In this chapter we only show how you can plot the data from any given sensor
using this general approach. Instead of the actual sensor data we just use the
random generator in Python.

To read the actual sensor data you typically need a DAQ (Data Acquisition)
device connected to you PC or, e.g, a Raspberry Pi device. In all cases you
will typically need to install a driver from the vendor of the DAQ device or the
sensor you are using.

23.2 Introduction to Real-Time Plotting

You can also use the matplotlib for real-time plotting.

Example 23.2.1. Introduction to Real-Time Plotting

Here is a basic example:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 p l t . ax i s ([0 , 10 , 0 , 1])
5

6 delay = 1 #Seconds
7

8 f o r i in range (10) :
9 y = np . random . random ()

10 p l t . s c a t t e r (i , y)
11 p l t . pause (de lay)

118

12

13 p l t . show ()

Listing 23.1: Real-Time Plotting in Python

We get the following plot as shown in Figure 23.1.

Figure 23.1: Real-Time Plotting with Python

You cannot see the the actual behavior of the plot by watching Figure 23.1, so
you need to run the Python program yourself.

If you run the code you see the plot is updated with a new value every second
as specified in the code.

[End of Example]

Note! If you use Anaconda and Spyder, you typically need to change the the
settings for how graphics are are displayed in Spyder.

Select Preferences from the menu, then IPython console in the list of categories
on the left, then the tab Graphics at the top, and change the Graphics back-end
from Inline to e.g. Automatic or Qt. See Figure 23.2.

119

Figure 23.2: Change how Graphics are displayed in the Spyder Editor

23.3 Real-Time Plotting with Animation

For more advanced Real-Time plots we should use the animation module in the
matplotlib library (matplotlib.animation).

To create a real-time plot, we need to use the animation module in matplotlib.
We set up the figure and axes in the usual way, but we draw directly to the
axes, ax, when we want to create a new frame in the animation.

We need to use the FuncAnimation function:

1 ani = animation . FuncAnimation (f i g , animate , f a r g s=(xs , ys) ,
i n t e r v a l =1000)

FuncAnimation is a special function within the animation module that lets us
automate updating the graph. We pass the FuncAnimation() a handle to the
figure we want to draw, fig, as well as the name of a function that should be
called at regular intervals. We called this function animate() and is defined just
above our FuncAnimation() call.

Still in the FuncAnimation() parameters, we set fargs, which are the arguments
we want to pass to our animate function (since we are not calling animate()
directly from within our own code). Then, we set interval, which is how long
we should wait between calls to animate() (in milliseconds).

Note: As an argument to FuncAnimation, notice that animate does not have
any parentheses. This is passing a reference to the function and not the result
of that function. If you accidentally add parentheses to animate here, animate
will be called immediately (only once), and you’ll likely get an error

120

Example 23.3.1. Real-Time Plotting with Animation

Below you find the Python Code for a basic example where we use the anima-
tion module in matplotlib.

In the example we update the plot every seconds by setting the interval=1000ms
as an input argument to the FuncAnaimation function.

1 import datet ime as dt
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4 import matp lo t l i b . animation as animation
5

6 # Create f i g u r e f o r p l o t t i n g
7 f i g = p l t . f i g u r e ()
8 ax = f i g . add subplot (1 , 1 , 1)
9 xs = []

10 ys = []
11

12

13 # This func t i on i s c a l l e d p e r i o d i c a l l y from FuncAnimation
14 de f animate (i , xs , ys) :
15

16 temp c = round (np . random . random () , 2)
17

18 # Add x and y to l i s t s
19 xs . append (dt . datet ime . now() . s t r f t im e (’%H:%M:%S.% f ’))
20 ys . append (temp c)
21

22 # Limit x and y l i s t s to 20 items
23 xs = xs [−20 :]
24 ys = ys [−20 :]
25

26 # Draw x and y l i s t s
27 ax . c l e a r ()
28 ax . p l o t (xs , ys)
29

30 # Format p l o t
31 p l t . x t i c k s (r o t a t i on =45, ha=’ r i g h t ’)
32 p l t . s ubp l o t s ad j u s t (bottom=0.30)
33 p l t . t i t l e (’ Temperature Data ’)
34 p l t . y l ab e l (’ Temperature (deg C) ’)
35

36 # Set up p lo t to c a l l animate () func t i on p e r i o d i c a l l y
37 ani = animation . FuncAnimation (f i g , animate , f a r g s=(xs , ys) ,

i n t e r v a l =1000)
38 p l t . show ()

Listing 23.2: Real-Time Plotting with Animation

Figure 23.3 shows the final plot for this example. You cannot see the the actual
behavior of the plot by watching Figure 23.3, so you need to run the Python
program yourself.

[End of Example]

121

Figure 23.3: Real-Time Plotting with Animation

23.3.1 Speeding Up the Plot Animation

Clearing a graph and redrawing everything can be a time-consuming process in
terms of computer time. To remedy that, we are going to use a trick known as
blitting.

Blitting is an old computer graphics technique where several graphical bitmaps
are combined into one. This way, only one needed to be updated at a time,
saving the computer from having to redraw the whole scene every time.
Matplotlib allows us to enable blitting in FuncAnimation, but it means we need
to re-write how some of the animate() function works. To reap the true benefits
of blitting, we need to set a static background, which means the axes can’t scale
and we can’t show moving timestamps anymore. This means that you have to
take the good with the bad. So you have to choose whats most important for
you un your simulations.

Example 23.3.2. Real-Time Plotting with Animation with improved Perfor-
mance

Python Code:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import matp lo t l i b . animation as animation
4

5 # Parameters
6 x l en = 200 # Number o f po in t s to d i sp l ay
7 y range = [0 , 20] # Range o f p o s s i b l e Y va lue s to d i sp l ay
8

122

9 # Create f i g u r e f o r p l o t t i n g
10 f i g = p l t . f i g u r e ()
11 ax = f i g . add subplot (1 , 1 , 1)
12 xs = l i s t (range (0 , 200))
13 ys = [0] ∗ x l en
14 ax . s e t y l im (y range)
15

16

17 # Create a blank l i n e . We w i l l update the l i n e in animate
18 l i n e , = ax . p l o t (xs , ys)
19

20 # Add l a b e l s
21 p l t . t i t l e (’ Temperature Data ’)
22 p l t . x l ab e l (’ Samples ’)
23 p l t . y l ab e l (’ Temperature (deg C) ’)
24

25 # This func t i on i s c a l l e d p e r i o d i c a l l y from FuncAnimation
26 de f animate (i , ys) :
27

28 rand va l = np . random . random () ∗20 #Generate Random Values
between 0 and 20

29

30 temp c = round (rand val , 2)
31

32 #pr in t (temp c)
33

34 # Add y to l i s t
35 ys . append (temp c)
36

37 # Limit y l i s t to s e t number o f i tems
38 ys = ys [− x l en :]
39

40 # Update l i n e with new Y va lue s
41 l i n e . s e t ydata (ys)
42

43 r e turn l i n e ,
44

45 # Set up p lo t to c a l l animate () func t i on p e r i o d i c a l l y
46 ani = animation . FuncAnimation (f i g ,
47 animate ,
48 f a r g s=(ys ,) ,
49 i n t e r v a l =100 ,
50 b l i t=True)
51 p l t . show ()

Listing 23.3: Real-Time Plotting with Animation

Figure 23.4 shows the final plot for this example. You cannot see the the actual
behavior of the plot by watching Figure 23.4, so you need to run the Python
program yourself.

[End of Example]

For more information about Matplotlib:animations:

https://scipy-cookbook.readthedocs.io/items/MatplotlibAnimations.html

123

Figure 23.4: Real-Time Plotting with Animation

Other resources:

https://learn.sparkfun.com/tutorials/graph-sensor-data-with-python-and-matplotlib/allplot-
sensor-data

https://stackoverflow.com/questions/11874767/how-do-i-plot-in-real-time-in-a-while-
loop-using-matplotlib

124

Chapter 24

Data Acquisition (DAQ)
with Python

Python is probably best suited for ”ad-hoc” numerical calculations, analysis,
simulations, etc., but can be used for many other purposes, even if other pro-
gramming languages are better suited.

24.1 Introduction to DAQ

To read sensor data you typically need a DAQ (Data Acquisition) device con-
nected to you PC or, e.g, a Raspberry Pi device. In all cases you will typically
need to install a driver from the vendor of the DAQ device or the sensor you
are using.

A DAQ System consists of 4 parts:

• Physical input/output signals, sensors

• DAQ device/hardware

• Driver software

• Your software application (Application software) - in this case your Python
application

Figure 24.1 shows the different steps involved in a DAQ system.

Here you find more information, resources, videos and examples regarding DAQ:
https://www.halvorsen.blog/documents/technology/daq/

24.2 Data Acquisition using NI DAQ Devices

Here we will show how we can use Python to retrieve data from the physical
world using a DAQ device or an I/O module.

125

Figure 24.1: Data Acquisition (DAQ) System

We will use a DAQ device from National Instruments (NI).

Web:
http://www.ni.com/

DAQ hardware: WE will use a NI-USB-600x DAQ device from National Instru-
ments, such as:

• NI-USB-6001

• NI-USB-6008

• NI-USB-6009

They are almost identical and the prices is not so bad either.

USB-6008:
http://www.ni.com/en-no/support/model.usb-6008.html

Figure 24.2 shows the USB-6008 DAQ device from NI.

Streaming Data from NI Data Acquisition (DAQmx) Devices into Python:
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8o0SAC

We assume we want to do the following: - We have a USB DAQ system from
National Instruments - We want to stream data from my hardware into Python
to do data processing - We would like to log data to a file on the hard disk

The best way to do this is to use the NI-DAQmx Python API provided by Na-
tional Instruments (nidaqmx). The NI-DAQmx Python API is hosted on
GitHub.

The nidaqmx Python package is a wrapper around the NI-DAQmx C API us-
ing the ctypes Python library, and only supports the Windows operating system.

A Python API for interacting with NI-DAQmx (GitHub):
https://github.com/ni/nidaqmx-python

126

Figure 24.2: USB-6008

For more information about NI DAQ:
ni.com/daq

For more information about Python Resources for NI Hardware and Software:
ni.com/python

Another option is to use the PyDAQmx Python package.
This package allows users to use data acquisition hardware from National In-
strument with python. It makes an interface between the NIDAQmx driver
and python. It currently works only on Windows. The package is not an open
source driver from NI acquisition hardware. You first need to install the driver
provided by NI.

Web:
https://pypi.org/project/PyDAQmx/

https://pythonhosted.org/PyDAQmx/

24.2.1 NI-DAQmx

NI-DAQmx is the software you use to communicate with and control your NI
data acquisition (DAQ) device.

NI-DAQmx supports only the Windows operating system.

You can download NI-DAQmx from this location:

https://www.ni.com/download

127

24.2.2 Measurement Automation Explorer (MAX)

Measurement Automation Explorer (MAX) is a software you can use it to
configure and test the DAQ device before you use it in Python (or other pro-
gramming languages).

MAX is included with NI-DAQmx software.

Figure 24.3 shows Measurement Automation Explorer (MAX).

Figure 24.3: Measurement Automation Explorer(MAX)

With MAX you can make sure your DAQ device works as expected before you
start using it in your Python program. You can use the Test Panels to test your
analog and digital inputs and outputs channels.

You can also change name of the unit, which you need to use in your Python
code.

24.3 NI-DAQmx Python API

In this section we will use the NI-DAQmx Python API provided by National
Instruments (nidaqmx). The NI-DAQmx Python API is hosted on GitHub.

The nidaqmx Python package is a wrapper around the NI-DAQmx C API us-
ing the ctypes Python library, and only supports the Windows operating system.

128

A Python API for interacting with NI-DAQmx (GitHub):
https://github.com/ni/nidaqmx-python

Other resources:
Control NI DAQ Device with Python and NI DAQmx:
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z0000019Pf1SAE

Below 4 basic examples will be provided:

• Analog Write using NI DAQ Device

• Analog Read using NI DAQ Device

• Digital Write using NI DAQ Device

• Digital Read using NI DAQ Device

You can easily extend this examples to make them suit your needs. Typically
you need to include a while loop where you write and/or read from the DAQ
device inside the loop, e.g. read values from one or more sensors that are con-
nected to the DAQ device, you may want to create a control system reading
the process value and then later write the calculated control signal (e.g. using
a PID controller) back to the DAQ device and the process.

24.3.1 Analog Write

Example 24.3.1. Analog Write using NI DAQ Device

Python code:

1 import nidaqmx
2

3 with nidaqmx . Task () as task :
4 task . ao channe l s . add ao vo l tage chan (’Dev1/ao0 ’ , ’ mychannel ’

, 0 , 5)
5

6 value = 3
7 task . s t a r t
8 task . wr i t e (va lue)
9 task . stop

Listing 24.1: Analog Write using NI DAQ Device

Note! The USB-6008 can only output a voltage signal between 0 and 5V.

[End of Example]

24.3.2 Analog Read

Example 24.3.2. Analog Read using NI DAQ Device

Python code:

129

1 import nidaqmx
2

3 with nidaqmx . Task () as task :
4 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i1 ”)
5

6 value = task . read ()
7 pr in t (va lue)
8 task . stop

Listing 24.2: Analog Read using NI DAQ Device

[End of Example]

Example 24.3.3. Analog Read with RSE

Python code:

1 import nidaqmx
2

3 from nidaqmx . cons tant s import (
4 TerminalConf igurat ion)
5

6 with nidaqmx . Task () as task :
7 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i0 ” ,

t e rm ina l c on f i g=TerminalConf igurat ion .RSE)
8

9 value = task . read ()
10 pr in t (va lue)
11 task . stop

Listing 24.3: Analog Read with RSE

[End of Example]

Example 24.3.4. Analog Read with Differential

Python code:

1 import nidaqmx
2

3 from nidaqmx . cons tant s import (
4 TerminalConf igurat ion)
5

6 with nidaqmx . Task () as task :
7 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i0 ” ,

t e rm ina l c on f i g=TerminalConf igurat ion .DIFFERENTIAL)
8

9 value = task . read ()
10 pr in t (va lue)
11 task . stop

Listing 24.4: Analog Read with Differential

[End of Example]

130

24.3.3 Digital Write

Example 24.3.5. Digital Write using NI DAQ Device

Python code:

1 import nidaqmx
2

3 with nidaqmx . Task () as task :
4 task . do channe l s . add do chan (”Dev1/ port0 / l i n e 0 ”)
5

6 value = True
7 task . s t a r t
8 task . wr i t e (va lue)
9 task . stop

Listing 24.5: Digital Write using NI DAQ Device

[End of Example]

24.3.4 Digital Read

Example 24.3.6. Digital Read using NI DAQ Device

Python code:

1 import nidaqmx
2

3 with nidaqmx . Task () as task :
4 task . d i channe l s . add di chan (”Dev1/ port0 / l i n e 0 ”)
5

6 task . s t a r t
7 value = task . read ()
8 pr in t (va lue)
9 task . stop

Listing 24.6: Digital Read using NI DAQ Device

[End of Example]

You should use the ”nidaqmx.stream readers” and nidaqmx.stream writers classes
to increase the performance of your application, which accept pre-allocated
NumPy arrays.

https://nidaqmx-python.readthedocs.io/en/latest/stream readers.html#module-
nidaqmx.stream readers

https://nidaqmx-python.readthedocs.io/en/latest/stream writers.html#module-
nidaqmx.stream writers

131

24.4 Controlling LEDs

In this section we will see how we can control a LED from Python.

We will need the following equipment:

• PC with Python

• DAQ device

• Breadboard

• LED

• Resistor (e.g., 270ohm)

• Wires for connecting the components and create the circuit

Figure 24.4 shows an overview of LEDs.

Figure 24.4: LED Overview

A breadboard is used to wire electric components together. Figure 24.5 shows
how you should wire a LED using a Breadboard.

Figure 24.6 shows how you wire the LED and connect it to the DAQ device.

Python code for turning on the LED

Example 24.4.1. Controlling a LED from Python

Basic Python code:

1 import nidaqmx
2

3 with nidaqmx . Task () as task :
4 task . do channe l s . add do chan (”Dev1/ port0 / l i n e 0 ”)
5

6 value = True
7 task . s t a r t
8 task . wr i t e (va lue)
9 task . stop

Listing 24.7: Turn on a LED using Python

132

Figure 24.5: How to wire a LED on a Breadboard

Figure 24.6: Wire the LED and connect to the DAQ device

In this basic example we just turn on the LED.

Below you see an example where we turn the LED on and off inside a loop.

Python code:

1 import nidaqmx
2 import time
3

4

5 with nidaqmx . Task () as task :
6 task . do channe l s . add do chan (”Dev1/ port0 / l i n e 0 ”)
7

8 value = True
9 task . s t a r t

10

11 i = 1
12 whi le i < 10 :
13

133

14 task . wr i t e (va lue)
15 time . s l e e p (1)
16 value = not value
17 task . wr i t e (va lue)
18 i = i+1
19

20 task . stop

Listing 24.8: Controlling a LED using Python

[End of Example]

24.5 Read Data from Temperature Sensors

In this section we will use Python to read values from a temperature sensor.
We will also use Python to plot real-time data from the sensor.

24.5.1 Read Data from TMP36 Temperature Sensor

TMP36 is a small, low-cost temperature sensor and cost about $1 (you can buy
it “everywhere”).

We will need the following equipment:

• PC with Python

• DAQ device

• Breadboard

• TMP36 Temerature Sensor

• Wires for connecting the components and create the circuit

Figure 24.7 shows the TMP36 sensor.

We connect the TMP36 to LabVIEW using a USB DAQ Device from National
Instruments, e.g., USB-6001, USB-6008 or similar. I have used a breadboard
for the wiring.
Figure 24.8 show how we can wire the TMP36 together with the USB-6008 DAQ
device.

Figure 24.9 shows the TMP3x Datasheet.

We need to convert form Voltage (V) to degrees Celsius.

From the Datasheet (Figure 24.9) we have:

(x1, y1) = (0.75V, 25◦) (24.1)

134

Figure 24.7: TMP36 Temperature Sensor

(x2, y2) = (1V, 50◦) (24.2)

From the Datasheet (Figure 24.9) we see that there is a linear relationship
between Voltage and degrees Celsius (24.3):

y = ax+ b (24.3)

We can find a and b using the following known formula (24.4):

y − y1 =
y2 − y1
x2 − x1

(x− x1) (24.4)

By putting (24.1) and (24.2) into (24.4) we get:

y − 25 =
50− 25

1− 0.75
(x− 0.75) (24.5)

Then we get the following formula we can implement in our Python program:

y = 100x− 50 (24.6)

Example 24.5.1. Read TMP36 Temperature Data

Python code:

135

Figure 24.8: TMP36 tmp36 Wiring

1 import nidaqmx
2 import time
3

4 from nidaqmx . cons tant s import (
5 TerminalConf igurat ion)
6

7

8 with nidaqmx . Task () as task :
9 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i0 ” ,

t e rm ina l c on f i g=TerminalConf igurat ion .RSE)
10

11 i = 0
12 whi le i < 10 :
13

14 vo l tage = task . read ()
15

16 degreesC = 100∗ vo l tage − 50
17

18 pr in t (”Sample : ” , i)
19 pr in t (”Voltage Value : ” , round (vo l tage , 2))
20 pr in t (” Ce l s i u s Value : ” , round (degreesC , 1))
21 pr in t (”\n”)
22 time . s l e e p (1)
23 i = i+1
24

25 task . stop

Listing 24.9: Read TMP36 Temperature Data

In the example an ordinary while loop in combination with the sleep() function
have been used to read one new value each second.

[End of Example]

Example 24.5.2. Real-Time Plotting of Temperature Data

136

Figure 24.9: TMP3x Datasheet

In this example we will plot the data from the sensor using the Real-time plot-
ting examples shown in Chapter 23.

We want to present the value from the sensor in degrees Celsius:

1. Read Signal from DAQ Device (0-5V)

2. Convert to degrees Celsius using information from the Datasheet

3. Show/Plot Values from the Sensor

The Python code becomes as follows:

1 import nidaqmx
2 import time
3 import datet ime as dt
4 import numpy as np
5 import matp lo t l i b . pyplot as p l t
6 import matp lo t l i b . animation as animation
7

8 from nidaqmx . cons tant s import (
9 TerminalConf igurat ion)

10

11

12 # Create f i g u r e f o r p l o t t i n g
13 f i g = p l t . f i g u r e ()
14 ax = f i g . add subplot (1 , 1 , 1)
15 xs = []
16 ys = []
17

18 # I n i t i a l i z e DAQ dev i ce
19 task = nidaqmx . Task ()
20 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i0 ” , t e rm ina l c on f i g=

TerminalConf igurat ion .RSE)

137

21 task . s t a r t
22

23

24 # This func t i on i s c a l l e d p e r i o d i c a l l y from FuncAnimation
25 de f readdaq (i , xs , ys) :
26

27 #Read Value from DAQ dev i ce
28 vo l tage = task . read ()
29

30 #Convert Voltage to degree s Ce l s i u s
31 degreesC = 100∗ vo l tage − 50
32 temp c = round (degreesC , 1)
33 pr in t (” Ce l s i u s Value : ” , temp c)
34

35 # Add x and y to l i s t s
36 xs . append (dt . datet ime . now() . s t r f t im e (’%H:%M:%S.% f ’))
37 ys . append (temp c)
38

39 # Limit x and y l i s t s to 20 items
40 xs = xs [−20 :]
41 ys = ys [−20 :]
42

43 # Draw x and y l i s t s
44 ax . c l e a r ()
45 ax . p l o t (xs , ys)
46

47 # Format p l o t
48 p l t . x t i c k s (r o t a t i on =45, ha=’ r i g h t ’)
49 p l t . s ubp l o t s ad j u s t (bottom=0.30)
50 p l t . t i t l e (’ Temperature Data ’)
51 p l t . y l ab e l (’ Temperature (deg C) ’)
52

53

54 # Set up p lo t to c a l l readdaq () func t i on p e r i o d i c a l l y
55 ani = animation . FuncAnimation (f i g , readdaq , f a r g s=(xs , ys) ,

i n t e r v a l =1000)
56 p l t . show ()
57 task . stop

Listing 24.10: Real-Time Plotting of Temperature Data

[End of Example]

24.5.2 Read Data from Thermistor

A Thermistor is an electronic component that changes resistance to tempera-
ture, a so-called Resistance Temperature Detectors (RTD). It is often used as a
temperature sensor.

Example 24.5.3. Read Thermistor Temperature Data

We will need the following equipment:

• PC with Python

• DAQ device

138

• Breadboard

• 10kohm Thermistor

• 10kohm Resistor

• Wires for connecting the components and create the circuit

Our Thermistor is a so-called NTC (Negative Temperature Coefficient). In a
NTC Thermistor, resistance decreases as the temperature rises.

There is an non-linear relationship between resistance and excitement. To find
the temperature we can use the following equation (Steinhart-Hart equation):

1

TK
= A+B ln(R) + C(ln(R))3 (24.7)

whereA, B and C are constants with the following values: A = 0.001129148, B =
0.000234125, C = 8.76741E − 08

TK is the temperature in Kelvin.

We want to solve the equation regarding the Temperature:

TK =
1

A+B ln(R) + C(ln(R))3
(24.8)

The Temperature in degrees Celsius will then be:

TC = TK − 273.15 (24.9)

Wiring...
Figure 24.10 shows how we wire the components together.

Figure 24.10: Thermistor Wiring

139

Figure 24.11: Voltage Divider

The wiring is called a ”Voltage divider”.

Figure 24.11 shows a general Voltage Divider.

A general Voltage Divider has the following equation:

Vout = Vin
R2

R1 +R2
(24.10)

The Voltage Divider for our system becomes as shown in Figure 24.12.

Figure 24.12: Voltage Divider for our System

We then have the following equation:

Vout = Vin
Rt

R0 +Rt
(24.11)

140

where Rt is our 10kohm Thermistor and R0 is an ordinary 10kohm Resistor.

Vin in our case will be +5V which we get from the USB-6008 DAQ device as
shown in the wiring diagram.

Vout is the voltage we read using the DAQ device.

Since we need to find the Resistance Rt, which is used in the Steinhart-Hart
equation, we reformulate the formula:

Rt =
VoutR0

Vin − Vout
(24.12)

We har no ready to start making the Python program for this example.

The program include the following necessary steps:

1. We wire the circuit on the Breadboard and connect it to the DAQ device

2. We measure Vout using the DAQ

3. We calculate Rt using the Voltage Divider equation

Rt = VoutR0

Vin−Vout

4. We use Steinhart-Hart equation for finding the Temperature

TK = 1
A+B ln(Rt)+C(ln(Rt))3

5. Finally we convert to degrees Celsius

TC = TK − 273.15

The Python code then becomes:

1 import nidaqmx
2 import numpy as np
3 import time
4

5 from nidaqmx . cons tant s import (
6 TerminalConf igurat ion)
7

8

9 Vin = 5
10 Ro = 10000 # %10k Re s i s t o r
11

12

13 with nidaqmx . Task () as task :
14 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i0 ” ,

t e rm ina l c on f i g=TerminalConf igurat ion .RSE)
15

16 i = 0
17 whi le i < 10 :
18

19 Vout = task . read ()
20

21 Rt = (Vout∗Ro) /(Vin−Vout) # Voltage Div ider Equation
22 # Rt=10000; Used f o r Test ing . Se t t i ng Rt=10k should g ive

TempC=25
23

141

24 # Ste inha r t cons tant s
25 A = 0.001129148
26 B = 0.000234125
27 C = 0.0000000876741
28

29 # Ste inhart−Hart Equation
30 TempK = 1 / (A + (B ∗ np . l og (Rt)) + (C ∗ pow(np . l og (Rt) ,3))

)
31

32 # Convert from Kelvin to Ce l s i u s
33 TempC = TempK − 273 .15
34

35 pr in t (”Sample : ” , i)
36 pr in t (”Voltage Value : ” , round (Vout , 2))
37 pr in t (” Ce l s i u s Value : ” , round (TempC, 1))
38 pr in t (”\n”)
39 time . s l e e p (1)
40 i = i+1
41

42 task . stop

Listing 24.11: Read Thermistor Temperature Data

[End of Example]

Example 24.5.4. Real-Time Plotting of Thermistor Temperature Data

Python code:

1 See prev ious examples

Listing 24.12: Real-Time Plotting of Thermistor Temperature Data

[End of Example]

24.5.3 Read Data NI TC-01 Thermocouple Device

In this chapter several examples have been shown using a DAQ device combined
with different sensors and components.

Here some examples will be shown using a preset temperature sensor from Na-
tional Instruments called NI USB-TC01. This is a USB based temperature
without need for any kind of wiring, you just plug it in and make your Python
program. Since the NI USB-TC01 is compatible with NI-DAQmx, you can pro-
gram it in the same way as other DAQ devices from NI.

Figure 24.13 shows the TC-01 Thermocouple Device from NI.

Example 24.5.5. Real-Time Plotting of Thermistor Temperature Data

Python code:

142

Figure 24.13: TC-01 Thermocouple Device

1 import nidaqmx
2

3 task = nidaqmx . Task ()
4

5 task . a i c hanne l s . add a i thrmcpl chan (”TC01/ a i0 ”)
6

7 task . s t a r t ()
8

9 value = task . read ()
10 pr in t (round (value , 1))
11

12 task . stop ()
13 task . c l o s e ()

Listing 24.13: TC-01 Thermocouple Python Example

This is just a basic example, which you can easily extend using a while loop or
using some kind of plotting, etc..

[End of Example]

24.6 Data Logging

Python has several functions for creating, reading, updating, and deleting files.

143

Part VI

Python Database
Development

144

Chapter 25

Database Applications with
Python

Here we will learn how we can use Python for communication with a Database
system such as SQL Server or MySQL. We will learn how we connect to a
database, how we can insert data into the database and retrieve data from the
database.

A Database is a structured way to store lots of information. The information
is stored in different tables. Some of the most popular Database Systems today
are:

• SQL Server

• MySQL

• MariaDB

• MongoDB

• etc.

ER Diagram (Entity-Relationship Diagram) is used for design and modeling of
databases. It specifies tables and relationship between them (Primary Keys and
Foreign Keys)

Figure 25.1 shows an example of an ER diagram consisting of two database
tables.

Here you can learn more about Database Systems, download examples and get
additional resources, see videos, etc.:
https://www.halvorsen.blog/documents/technology/database/

25.1 Structured Query Language (SQL)

Structured Query Language (SQL) is a database language supported by most of
the existing database systems today. You use SQL to interact with the database

145

Figure 25.1: ER Diagram Example

system, like insert data into the database and retrieve data from the database.

Here you can learn more about SQL, download examples and get additional
resources, see videos, etc.:
https://www.halvorsen.blog/documents/technology/database/

25.2 SQL Server

Here we will see how we can communicate with a SQL Server database from
Python.

25.3 MySQL

Here we will see how we can communicate with a MySQL database from Python.

25.4 MongoDB

Here we will see how we can communicate with a MongoDB database from
Python.

MongoDB is a so-called NoSQL database. One of the most popular NoSQL
database systems is MongoDB.

You can download a free MongoDB database from:
https://www.mongodb.com

146

Chapter 26

Structured Query Language
(SQL)

...

147

Chapter 27

SQL Server with Python

27.1 Introduction to SQL Server

Here we will see how we can communicate with a SQL Server from Microsoft
using the Python programming language.

27.2 SQL Server drivers for Python

There are several python SQL drivers available. However, Microsoft places its
testing efforts and its confidence in pyodbc driver. Another driver is pymssql.

pyodbc is an open source Python module that can be used to accessing ODBC
databases.

27.3 pyodbc

pyODBC uses the Microsoft ODBC driver for SQL Server.

27.3.1 Installation of pyodbc

Install pyodbc using pip - Python package manager.

pip install pyodbc

27.3.2 ODBC Drivers

Microsoft have written and distributed multiple ODBC drivers for SQL Server:
You can use the ”ODBC Driver 17 for SQL Server” driver.

This driver supports SQL Server 2008 through 2019.

148

Note that the ”SQL Server Native Client ...” and earlier drivers are deprecated
and should not be used for new development.
The connection string can be written like this:

DRIVER=ODBC Driver 17 for SQL Server;SERVER=test;DATABASE=test;UID=user;PWD=password

27.4 SQL Server Python Examples

The cursor.execute function can be used to retrieve a result set from a query
against the SQL Database. This function accepts a query and returns a result
set.

Example 27.4.1. Basic SQL Server Example

The cursor.execute function is used to retrieve a result set from a query against
the SQL Server Database. This function accepts a query and returns a result
set, which can be iterated over with the use of cursor.fetchone().

1 import pyodbc
2

3 s e r v e r = ”NUCHPH\\SQLEXPRESS”
4 database = ”BOOKS”
5 username = ” sa ”
6 password = ”xxx”
7 conn = pyodbc . connect (”DRIVER={ODBC Driver 17 f o r SQL Server } ;

SERVER=” + se rv e r + ” ;DATABASE=” + database + ” ;UID=” +
username + ” ;PWD=” + password)

8

9 cur so r = conn . cu r so r ()
10

11 cur so r . execute (”SELECT @@version ; ”)
12 row = cur so r . f e t chone ()
13 whi le row :
14 pr in t (row [0])
15 row = cur so r . f e t chone ()

Listing 27.1: Basic SQL Server Example

Example 27.4.2. Getting Data from a Table in SQL Server

Below you find a basic example where data are retrieved from the SQL Server.

1 import pyodbc
2

3 s e r v e r = ”NUCHPH\\SQLEXPRESS”
4 database = ”BOOKS”
5 username = ” sa ”
6 password = ”xxx”
7 conn = pyodbc . connect (”DRIVER={ODBC Driver 17 f o r SQL Server } ;

SERVER=” + se rv e r + ” ;DATABASE=” + database + ” ;UID=” +
username + ” ;PWD=” + password)

8

149

9 cur so r = conn . cu r so r ()
10

11

12 f o r row in cur so r . execute (” s e l e c t BookId , T i t l e , Isbn from BOOK”) :
13 pr in t (row . BookId , row . Ti t l e , row . Isbn)

Listing 27.2: Getting Data from SQL Server

[End of Example]

27.5 Stored Procedures

27.6 Resources

https://github.com/mkleehammer/pyodbc/wiki/Connecting-to-SQL-Server-from-
Windows

27.7 pymssql

Resources:

https://pypi.org/project/pymssql/
http://www.pymssql.org/

27.8 Resources

https://docs.microsoft.com/en-us/sql/connect/python/python-driver-for-sql-server

150

Chapter 28

MySQL with Python

...

151

Chapter 29

MongoDB with Python

Here we will learn how we can use Python for communication with MongDB.
We will learn how we connect to a database, how we can insert data into the
database and retrieve data from the database.

29.1 Introduction to MongoDB

Here we will see how we can communicate with a MongoDB database from
Python.

MongoDB is a so-called NoSQL database. One of the most popular NoSQL
database systems is MongoDB.

You can download a free MongoDB database from:
https://www.mongodb.com

29.2 MongoDB with Python

Here we will see how we can communicate with a MongoDB database from
Python.

Python needs a MongoDB driver to access the MongoDB database. Many dif-
ferent drivers do exists, so you just need to choose one.

29.2.1 PyMongo

The PyMongo distribution contains tools for interacting with MongoDB database
from Python

https://pypi.org/project/pymongo/

Installation is done using PIP:

152

1 python −m pip i n s t a l l pymongo

29.3 Additional Resources

Tutorials:
https://www.w3schools.com/python/pythonmongodbgetstarted.asp

153

Part VII

Python Application
Development

154

Chapter 30

Development of
Applications with Python

Python is popular within computation, but can be used within many other
applications and can be integrated and used in combination with other pro-
gramming languages, e.g., for development of Web Applications, etc.

Python is probably best suited for ”ad-hoc” numerical calculations, analysis,
simulations, etc., but can be used for many other purposes, even if other pro-
gramming languages are better suited.

Python can be used for creating Web pages (in combination with HTML, CSS,
JavaScript). Python is then typically used on the server-side, while HTML, CSS
and JavaScript are used on the client-side.

An example is Django, which is a server-side Python framework used for creat-
ing dynamic web pages.

Python can also be used for programming and creating Raspberry Pi applica-
tions.

In general, Python is a multipurpose programming language that can be used
in many situations. But there is not one programming language which is best
in all kind of situations, so it is important that you know about and have skills
in different languages.

My list of recommendations:

• Visual Studio and C

• LabVIEW - a graphical programming language well suited for hardware
integration, taking measurements and data logging

• MATLAB - Numerical calculations and Scientific computing

• Python - Numerical calculations, and Scientific computing, etc.

155

• Web Programming, such as HTML, CSS, JavaScript and a Server-side
framework/programming language like PHP, ASP.NET

• Databases (such as SQL Server and MySQL) and using the Structured
Query Language (SQL)

• App Development for the 2 main platforms iOS (XCode using the Swift
Programming Language) and Android (Android Studio using the Java
Programming Language or Kotlin Programming language)

If you have skills in most of the tools, programming languages and frameworks
mention above, you are well suited for working as a full-time programmer or
software engineer.
A good resource or starting point for creating Applications for Python is:

Applications for Python [18]:
https://www.python.org/about/apps/

30.1 Mathematics, Science and Engineering

Python is probably best suited for ”ad-hoc” numerical calculations, analysis,
simulations, etc. These kinds of applications has also been the main focus in
this textbook. Other kinds of applications will briefly be covered in this chap-
ter. More details will be covered in later chapters and in other textbooks in
my Python textbooks series, which you can read more of in the Preface of this
textbook.

The SciPy is a collection of packages for mathematics, science, and engineering,
which has been thoroughly reviewed earlier in this textbook.

30.2 Desktop GUI Applications

Python don’t come with builtin tools for creating traditional desktop GUI ap-
plications, so you need to use an external GUI packages for this purpose.

In my opinion, tools like Visual Studio where you can create professional GUI
applications using either the C or VB.NET languages in one integrated packages
is a better choice.

Another good alternative is LabVIEW, which has powerful GUI features in com-
bination with extensive hardware integration.

Other tools (Integrated Programming Environments, IDE) and programming
languages for GUI applications os Xcode on macOS, which can be used for cre-
ating macOS desktop applications and apps for iPhone and iPad.

156

For Android development you have Android Studio. Here you can use program-
ming languages like Java and Kotlin.

Since this is a Python textbook, lets go back to the options we have if we want
to create desktop GUI applications with Python.

Python has different desktop GUI frameworks like:

• PyQt

• Tkinter

• WxPython

• PyGUI

• PySide2

• Kivy

These are just some of the options we have, for a comprehensive overview of
GUI frameworks for Python see the following:

https://docs.python.org/3/library/othergui.htmlother-gui-packages
https://wiki.python.org/moin/GuiProgramming

PyQt and wxPython, all have a modern look and feel and more widgets than
Tkinter.

This is also a bit of a problem when it comes to desktop GUI development with
Python. You have so many choices, and sometimes its better better with one
good option than many half good options.

30.2.1 PyQt

PyQt brings together the Qt C++ cross-platform application framework and the
cross-platform interpreted language Python. Qt is a cross-platform GUI toolkit.

Qt also includes Qt Designer, a graphical user interface designer. PyQt is able
to generate Python code from Qt Designer. It is also possible to add new GUI
controls written in Python to Qt Designer.

For more information about PyQt:

https://riverbankcomputing.com/software/pyqt/intro

For more information about Qt:

https://www.qt.io

157

PyQt Tutorials:

https://likegeeks.com/pyqt5-tutorial/

https://build-system.fman.io/pyqt5-tutorial

30.2.2 PySide2

PySide2 is the official Python module from the Qt for Python project, which
provides access to the complete Qt framework.

The originally PySide framework was originally released by Nokia, then owner
of Qt. After Nokia sold Qt in 2011, PySide was no longer maintained. Then
PySide2 was established and maintained by a community. Finally, in 2016, the
Qt company committed to officially support the PySide2 project.
So basically, PySide2 is very similar to PyQt.

The downside with PySide2 (August 2019) is that it is still in ”beta” (Technical
Preview).

For more information about PySide2:

https://pypi.org/project/PySide2/

https://wiki.qt.io/QtforP ython

30.2.3 Tkinter

Another popular GUI framework is Tkinter.

For more information about Tkinter:

https://docs.python.org/2/library/tkinter.html

30.2.4 WxPython

WxPython is a cross-platform GUI toolkit for the Python language.

For more information about WxPython:

https://www.wxpython.org

https://wiki.wxpython.org/Getting

158

30.3 Web Applications

Python can be used for creating Web pages (in combination with HTML, CSS,
JavaScript). Python is then typically used on the server-side, while HTML, CSS
and JavaScript are used on the client-side.

An example is Django, which is a server-side Python framework used for creat-
ing dynamic web pages.

Read more about Django here:

https://www.djangoproject.com
Other popular web application frameworks and programming languages are
ASP.NET and PHP.

You may read more about web programming in general here:

https://www.halvorsen.blog/documents/programming/web/

30.4 Database Applications

Python can be used for communication with a database system such as SQL
Server or MySQL. Python has different packages for communication with dif-
ferent database systems, both SQL databases (e.g., SQL Server, MySQL, Mari-
aDB, etc.) and so-called NoSQL databases (e.g., MongoDB).

Here you can learn more about Database Systems and SQL, download examples
and get additional resources, see videos, etc.:
https://www.halvorsen.blog/documents/technology/database/

30.4.1 SQL Server

SQL Server is a Database System from Microsoft. SQL Server comes in different
editions, for basic, personal use SQL Server Express is recommended because it
is simple to use and it is free.

Read more about SQL Server here:

https://www.halvorsen.blog/documents/technology/database/sqlserver.php

30.4.2 MySQL

MySQL is an open-source and widely used Relational Database Management
System (RDBMS).

MySQL comes in different editions, both paid (Enterprise) and free versions
(Community).

159

In addition to the Database itself, the MySQL Workbench is nice to have.
MySQL Workbench visual database design tool, used for Datbase Modelling,
etc. Another handy tool is phpMyAdmin. phpMyAdmin is a free software tool
written in PHP, intended to handle the administration of MySQL.

Read more about MySQL here:

https://www.halvorsen.blog/documents/technology/database/mysql.php

30.4.3 MariaDB

MariaDB is a spinoff from the more famous MySQL Database System.

The MariaDB database server is published as free and open source software.
MariaDB has compatibility with MySQL in most situations. MariaDB is said
to have slightly better performance than MySQL.

Read more about MariaDB here:

https://www.halvorsen.blog/documents/technology/database/mariadb.php

30.4.4 MongoDB

MongoDB is a general purpose, document-based, distributed database.

MongoDB is a cross-platform document-oriented database program. Classified
as a NoSQL database program.

You can download MongoDB from:
https://www.mongodb.com

160

Chapter 31

Python Integration with
Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from
Microsoft. It is used to develop computer programs, as well as websites, web
apps, web services and mobile apps. The deafult (main) programming language
in Visual studio is C, but many other programming languages are supported.

Visual studio is available for Windows and macOS.

Visual Studio (from Visual Studio 2017), has integrated support for Python, it
is called ”Python Support in Visual Studio”.

Web:
https://visualstudio.microsoft.com

Wikipedia:
https://en.wikipedia.org/wiki/MicrosoftV isualStudio

Here you can learn more about Visual studio and C, download examples and
get additional resources, see videos, etc.:
https://www.halvorsen.blog/documents/programming/csharp/

For an introduction to the Python integration in Visual Studio, see Chapter 19.

161

Chapter 32

Python Integration with
LabVIEW

32.1 What is LabVIEW?

LabVIEW is a graphical programming language well suited for hardware inte-
gration, taking measurements and data logging.
Go to my web site in order to learn more about LabVIEW:
https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/labview/

Her you find information about LabVIEW, you find lots of resources like training
material, videos, code examples, etc.

32.2 Using Python in LabVIEW

LabVIEW is a fully functional programming language which you can use to cre-
ate many different kinds of applications. In addition it cal also integrate with
many other programming languages like MATLAB and Python.

Web:
http://zone.ni.com/reference/en-XX/help/371361R-01/glang/python pal/

Use the Python functions to call Python code from LabVIEW. See Figure 32.1

Note! LabVIEW supports calling Python version 2.7 and 3.6. Although un-
supported versions might work with the LabVIEW Python functions, NI rec-
ommends using supported versions of Python only.

Ensure that the bitness of Python corresponds to the bitness of LabVIEW in-
stalled on the machine. This means if you have LabVIEW 32 bit, you should
use Python 32 bit and if you have LabVIEW 64 bit, you should use Python 64

162

bit.

To run the Python code, LabVIEW requires the Python shared libraries (DLLs)
in the system path.

For Windows: If you install Python 3.6, add the directory containing python36.dll
to the system path. If you install Python 2.7, add the directory containing
python27.dll to the system path.

For detailed instructions regarding Installing Python for Calling Python Code:
http://www.ni.com/product-documentation/54295/en/

LabVIEW functions for dealing with Python: Open Python Session Python
Node Close Python Session

Figure 32.1: Python Integration in LabVIEW

The ”Python Node” calls a Python function directly.

Here I will present some examples how we can integrate an existing Python
script or Python function.

Example 32.2.1. Python Integration in LabVIEW

We want to use Python to covert between Ceslius and Fahrenheit (and vice
versa).

The formula for converting from Celsius to Fahrenheit is:

Tf = (Tc × 9/5) + 32 (32.1)

The formula for converting from Fahrenheit to Celsius is:

Tc = (Tf − 32)× (5/9) (32.2)

First, we create a Python module with the following functions (fahrenheit.py):

1 de f c2 f (Tc) :
2

163

3 Tf = (Tc ∗ 9/5) + 32
4 r e turn Tf
5

6

7 de f f 2 c (Tf) :
8

9 Tc = (Tf − 32) ∗ (5/9)
10 r e turn Tc

Listing 32.1: Python Functions

Then, we create a Python script for testing the functions (testfahrenheit.py) :

1 from fah r enhe i t import c2f , f 2 c
2

3 Tc = 0
4

5 Tf = c2 f (Tc)
6

7 pr in t (”Fahrenheit : ” + s t r (Tf))
8

9

10 Tf = 32
11

12 Tc = f2c (Tf)
13

14 pr in t (” Ce l s i u s : ” + s t r (Tc))

Listing 32.2: Testing the Functions

The results becomes:

1 Fahrenheit : 32 .0
2 Ce l s i u s : 0 . 0

Lets make the LabVIEW program that call these Python functions:

In Figure 32.2 we see the Front Panel.

In Figure 32.3 we see the Block Diagram.

In Figure 32.4 we see LabVIEW Code for calling both Python func-
tions (c2f and f2c) from LabVIEW.

[End of Example]

164

Figure 32.2: Python Integration in LabVIEW

Figure 32.3: Python Integration in LabVIEW

165

Figure 32.4: Python Integration in LabVIEW

166

Chapter 33

Raspberry Pi and Python

33.1 What is Raspberry Pi?

The Raspberry Pi is a credit-card-sized computer that plugs into your TV and
a keyboard. It is a capable little computer which can be used in electronics
projects, and for many of the things that your desktop PC does.

Raspberry Pi is very popular in IoT projects and applications.

For more information and resources regarding Raspberry Pi:

https://www.halvorsen.blog/documents/technology/iot/raspberry pi.php

Other Resources:

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-
with-the-raspberry-pi/programming-in-python

First, before you start programming Python on a Raspberry Pi device, you need
to install an operating system like Raspbian. Raspbian is a Linux distribution
tailor made for Raspberry Pi.

Raspbian comes also pre-installed Python.

For more information about Raspbian:

https://www.raspberrypi.org/downloads/raspbian/

167

Chapter 34

Web Development with
Python

34.1 Introduction to Web Development

The basic building blocks for creating Web pages are the following:

• HTML

• CSS

• JavaScript

Here you find more information, resources, videos and examples regarding Web
Development:
https://www.halvorsen.blog/documents/programming/web/

34.1.1 HTML

Here you find more information, resources, videos and examples regarding HTML:
https://www.halvorsen.blog/documents/programming/web/html.php

34.1.2 CSS

34.1.3 JavaScript

34.2 Introduction to Web Frameworks

The basic building blocks for creating Web pages are the following:

• HTML

• CSS

• JavaScript

168

In addition you typically need a Web Framework for creating dynamic web pages
that communicate with a Database, etc.

We divide Web Development into 2 parts: Server-side development and client-
side development.
On the server-side we have different Web Development Frameworks like:

• PHP

• ASP.NET

• ... Many others, including different Python Web Development Frameworks

34.2.1 PHP

Here you find more information, resources, videos and examples regarding PHP:
https://www.halvorsen.blog/documents/programming/web/php.php

34.2.2 ASP.NET

Here you find more information, resources, videos and examples regarding ASP.NET:
https://www.halvorsen.blog/documents/programming/web/aspnet.php

There are different Python Frameworks you can use for creating Web Applica-
tions with Python.
Django Bottle Flask

34.3 Django - Python-based Web Framework

Django - Python-based Web Framework.

169

Chapter 35

Create GUI Applications

Here are some programming environments and programming languages for cre-
ating GUI applications presented.

35.1 LabVIEW

Here you find more information, resources, videos and examples regarding Lab-
VIEW:
https://www.halvorsen.blog/documents/programming/labview/

35.2 Visual Studio and C#

Here you find more information, resources, videos and examples regarding Vi-
sual Studio and C#:
https://www.halvorsen.blog/documents/programming/csharp/

35.3 Web Development

Here you find more information, resources, videos and examples regarding Web
Development:
https://www.halvorsen.blog/documents/programming/web/

Here you find more information, resources, videos and examples regarding HTML:
https://www.halvorsen.blog/documents/programming/web/html.php

Here you find more information, resources, videos and examples regarding PHP:
https://www.halvorsen.blog/documents/programming/web/php.php

Here you find more information, resources, videos and examples regarding ASP.NET:
https://www.halvorsen.blog/documents/programming/web/aspnet.php

170

Chapter 36

Machine Learning with
Python

36.1 Introduction to Machine Learning

Here you can learn more about Machine Learning, download examples and get
additional resources, see videos, etc.:
https://www.halvorsen.blog/documents/technology/machinelearning/

171

Part VIII

Python PyQt GUI
Development

172

Chapter 37

Getting Started with PyQt

37.1 Introduction

PyQt brings together the Qt C++ cross-platform application framework and
the cross-platform interpreted language Python.

Qt is a cross-platform GUI toolkit.

Qt also includes Qt Designer, a graphical user interface designer. PyQt is able
to generate Python code from Qt Designer. It is also possible to add new GUI
controls written in Python to Qt Designer.

37.2 Introduction to Qt

Qt (pronounced ”cute”) is a free and open-source widget toolkit for creating
graphical user interfaces as well as cross-platform applications that run on vari-
ous software and hardware platforms such as Linux, Windows, macOS, Android
or embedded systems with little or no change in the underlying codebase while
still being a native application with native capabilities and speed.

Qt is currently being developed by The Qt Company. Qt was originally created
by the Norwegian company Trolltech.

If you want to use Qt inside Python you will need a Python library that let you
interface with Qt’s C++ API. Many such bindings/libraries do exist. The most
used Qt Python library is PyQt. We will use PyQt in this chapter.

Another Qt Python library is PySide2. PySide2 is the official Python module
from the ”Qt for Python” project, which provides access to the complete Qt
framework.

The originally PySide framework was originally released by Nokia, then owner
of Qt. After Nokia sold Qt in 2011, PySide was no longer maintained. Then

173

PySide2 was established and maintained by a community. Finally, in 2016, the
Qt company committed to officially support the PySide2 project.
So basically, PySide2 is very similar to PyQt.

The downside with PySide2 (August 2019) is that it is still in ”beta” (Technical
Preview).

For more information about Qt, see the resources below.

Wikipedia:
https://en.wikipedia.org/wiki/Qt(software)

The Qt Company web site:
https://www.qt.io

37.3 Introduction to PyQt

PyQt is a set of Python bindings for The Qt Company’s Qt application frame-
work and runs on all platforms supported by Qt including Windows, OS X,
Linux, iOS and Android. PyQt5 supports Qt v5.

PyQt is developed and maintened by Riverbank Computing.
For more information about PyQt, see the resources below.

Riverbank Computing web site:
https://riverbankcomputing.com/software/pyqt/

Here are some PyQt Tutorials:

https://likegeeks.com/pyqt5-tutorial/

https://build-system.fman.io/pyqt5-tutorial

https://data-flair.training/blogs/python-pyqt5-tutorial/

https://www.guru99.com/pyqt-tutorial.html

https://pythonspot.com/gui/

37.3.1 PyQtChart

PyQt don’t include any types of charts. In order to use charts or plotting, you
can use PyQtChart.

PyQtChart is a set of Python bindings for The Qt Company’s Qt Charts library.
The bindings sit on top of PyQt5 and are implemented as a single module.

174

https://www.riverbankcomputing.com/software/pyqtchart/

37.4 Installing PyQt

37.4.1 Installation of PyQt

Use PIP in order to install PyQt5:

pip3 install PyQt5

PIP is a tool for installing Python packages.

The Python Package Index (PyPI) is a repository of software for the Python
programming language. Package authors use PyPI to distribute their software.

For more information about PIP and installing Python Packages:

https://packaging.python.org/tutorials/installing-packages/
For more information about PyPI:

https://pypi.org

For more information about PyQt5:

https://pypi.org/project/PyQt5/

37.4.2 Installation of Qt Designer

Qt Designer is a tool for quickly building graphical user interfaces with widgets
from the Qt GUI framework. It gives you a simple drag-and-drop interface for
laying out components such as buttons, text fields, combo boxes and more.

This gives the the plot shown in Figure 37.1.

You can download and install the Qt Designer from this web site:

https://build-system.fman.io/qt-designer-download

37.4.3 Installation of PyQtChart

Use PIP in order to install PyQtChart:

pip3 install PyQtChart

175

Figure 37.1: Qt Designer

37.5 PyQt Basics

Below we see a basic PyQt application created in Python.

1 import sys
2 from PyQt5 . QtWidgets import QApplication , QWidget
3 i f name == ” main ” :
4 app l i c a t i on = QApplication (sys . argv)
5 window = QWidget ()
6 window . r e s i z e (300 ,200)
7 window . setWindowTitle (”He l lo World”)
8 window . show ()
9 sys . e x i t (app l i c a t i on . exec ())

Listing 37.1: Basic PyQt Application

If you are using macOS, the Python code above gives the basic application
shown in Figure 37.2.

If you are using Windows, the Python code above gives the basic application
shown in Figure 37.3.

For the first, with the same Python code we can create cross-platform applica-
tion.

Lets go through the code in detail:

1 from PyQt5 . QtWidgets import QApplication , QWidget

This statement imports all the necessary modules you need to create your GUI.

176

Figure 37.2: Basic PyQt Application on macOS

The QtWidgets module contains all the major widgets that you will be using in
this tutorial.

1 app l i c a t i on = QApplication (sys . argv)

The first thing you need to create is an object of the QApplication class. All
PyQt GUI application must create an instance of QApplication.

sys.argv is the list of command-line parameters that you can pass to the appli-
cation when launching it through the shell or while automating the interface.

If you don’t need to pass any arguments to QApplications, you can use [].

1 app l i c a t i on = QApplication ([])

Then we need to create an object of the QWidget class. QWidget is the foun-
dation for all UI objects in Qt. Typically, everything you see in an an PyQt
application is a widget, examples: Label, ComboBox, CheckBox, RadioButton,
PushButton, etc.

1 window = QWidget ()

1 window . r e s i z e (300 ,200)

The resize method of the QWidget class allows you to set the dimensions of any
widget. In this case, you have resized the window to 300px by 200px.

Note that widgets could be nested together, the outermost widget (i.e., the wid-
get with no parent) is called a Window.

Use the setWindowTitle() method to set a title for your window.

177

Figure 37.3: Basic PyQt Application on Windows

1 window . setWindowTitle (”He l lo World”)

When all the settings are done, we need to show the window on the screen by
using the show() method:

1 window . show ()

The final piece of code is:

1 sys . e x i t (app l i c a t i on . exec ())

The app.exec () method starts the event loop inside Qt/C++. PyQt is mainly
written in C++ and uses the event loop mechanism to implement parallel exe-
cution. app.exec () passes the control over to Qt which will exit the application
only when the user closes it from the GUI.

37.6 PyQt Widgets

QWidget is the foundation for all UI objects in Qt. Typically, everything you
see in an an PyQt application is a widget, examples: Label, ComboBox, Check-
Box, RadioButton, PushButton, etc.

Lets make some code examples using some of these widgets.

Example 37.6.1. Label (QLabel)

A basic Label example:

178

1 import sys
2 from PyQt5 . QtWidgets import QApplication , QWidget , QLabel
3 i f name == ” main ” :
4 app l i c a t i on = QApplication (sys . argv)
5 window = QWidget ()
6 window . r e s i z e (300 ,200)
7 window . setWindowTitle (”He l lo World”)
8

9 l a b e l = QLabel (window)
10 l a b e l . setText (”This i s a Label ”)
11 l a b e l . move (100 ,50)
12

13 window . show ()
14 sys . e x i t (app l i c a t i on . exec ())

Listing 37.2: QLabel Example

This gives the window as shown in Figure 37.4.

Figure 37.4: QLabel Example

[End of Example]

Example 37.6.2. TextBox (QLineEdit)

A basic TextBox example:

1 import sys
2 from PyQt5 . QtWidgets import QApplication , QWidget , QLineEdit
3 i f name == ” main ” :
4 app l i c a t i on = QApplication (sys . argv)
5 window = QWidget ()
6 window . r e s i z e (300 ,200)
7 window . setWindowTitle (”He l lo World”)
8

9 inputbox = QLineEdit (window)
10 inputbox . setText (” Please ente r your Name”)

179

11 inputbox . r e s i z e (200 , 20)
12 inputbox .move (20 ,50)
13

14 window . show ()
15 sys . e x i t (app l i c a t i on . exec ())

Listing 37.3: QLineEdit EXample

This gives the window as shown in Figure 37.5.

Figure 37.5: QLineEdit Example

You can use the following if you want a read-only field:

1 inputbox . setReadOnly (True)

[End of Example]

Example 37.6.3. ComboBox (QComboBox)

A basic ComboBox box example:

1 import sys
2 from PyQt5 . QtWidgets import QApplication , QWidget , QComboBox
3 i f name == ” main ” :
4 app l i c a t i on = QApplication (sys . argv)
5 window = QWidget ()
6 window . r e s i z e (300 ,200)
7 window . setWindowTitle (”He l lo World”)
8

9 combobox = QComboBox(window)
10 combobox . addItems ([” item one” , ” item two” , ” item three ”])
11 combobox .move (100 ,50)
12

13 window . show ()
14 sys . e x i t (app l i c a t i on . exec ())

Listing 37.4: QLineEdit Example

180

This gives the window as shown in Figure 37.6.

Figure 37.6: QComboBox Example

We can change the visual appearance by using the following:

1 app l i c a t i on . s e t S t y l e (’ Fusion ’)

[End of Example]

37.7 Event Handling in PyQt

PyQt uses a mechanism called signals to let you react to events such as the
user clicking a button.

Example:

1 s e l f . btnShowData . c l i c k e d . connect (s e l f . btnShowData cl icked)

You need to define a function that is called when the signal occurs. This func-
tion is called a slot in PyQt.

Example:

1 de f btnShowData cl icked (s e l f) :
2 temp = np . random . rand int (20 ,50)
3 s e l f . txtTemp . setText (s t r (temp))

Example 37.7.1. Button Click

Below you see a basic Push Button example:

181

1 import sys
2 from PyQt5 . QtWidgets import QApplication , QWidget , QPushButton
3

4 de f bu t t on c l i c k ed () :
5 pr in t (”You c l i c k e d the Button”)
6

7 i f name == ” main ” :
8 app l i c a t i on = QApplication (sys . argv)
9 app l i c a t i on . s e t S t y l e (’ Fusion ’)

10 window = QWidget ()
11 window . r e s i z e (300 ,200)
12 window . setWindowTitle (”He l lo World”)
13

14 button = QPushButton (window)
15 button . setText (”Cl i ck Me”)
16 button .move (100 ,50)
17 button . c l i c k e d . connect (bu t t on c l i c k ed)
18

19 window . show ()
20 sys . e x i t (app l i c a t i on . exec ())

Listing 37.5: Button Click

[End of Example]

Example 37.7.2. MessageBox (QMessageBox)

MessageBox example:

1 import sys
2 from PyQt5 . QtWidgets import QApplication , QWidget , QPushButton ,

QMessageBox
3

4 de f bu t t on c l i c k ed () :
5 messagebox = QMessageBox ()
6 messagebox . setText (’You c l i c k e d the button ! ’)
7 messagebox . exec ()
8

9 i f name == ” main ” :
10 app l i c a t i on = QApplication (sys . argv)
11 app l i c a t i on . s e t S t y l e (’ Fusion ’)
12 window = QWidget ()
13 window . r e s i z e (300 ,200)
14 window . setWindowTitle (”He l lo World”)
15

16 button = QPushButton (window)
17 button . setText (”Cl i ck Me”)
18 button .move (100 ,50)
19 button . c l i c k e d . connect (bu t t on c l i c k ed)
20

21 window . show ()
22 sys . e x i t (app l i c a t i on . exec ())

Listing 37.6: MessageBox Example

This gives the window as shown in Figure 37.7.

182

Figure 37.7: QMessageBox Example

[End of Example]

Example 37.7.3. Combining different Widgets and Event Handling Example

In this example we combine different Widgets and some Event Handling:

1 import sys
2 import numpy as np
3 from PyQt5 . QtWidgets import QApplication , QWidget , QPushButton ,

QLineEdit , QMessageBox
4

5 c l a s s App l i ca t ion (QWidget) :
6

7 de f i n i t (s e l f) :
8 super () . i n i t ()
9 s e l f . i n i tU I ()

10

11 de f i n i tU I (s e l f) :
12 s e l f . setWindowTitle (”PyQt Example”)
13 s e l f . r e s i z e (400 , 300)
14

15

16 s e l f . txtName = QLineEdit (s e l f)
17 s e l f . txtName . setText (” Please ente r your Name”)
18 s e l f . txtName .move (20 , 20)
19 s e l f . txtName . r e s i z e (200 , 20)
20

21 s e l f . btnShowName = QPushButton (”Show Name” , s e l f)
22 s e l f . btnShowName .move (15 ,60)
23 s e l f . btnShowName . c l i c k e d . connect (s e l f . btnShowName clicked)
24

25 s e l f . show ()
26

27

28 de f btnShowName clicked (s e l f) :
29 s e l f . showMessage ()
30

31 de f showMessage (s e l f) :

183

32

33 name = s e l f . txtName . t ex t ()
34 t ex t = ” I s your Name ” + name + ”?”
35 r ep ly = QMessageBox . ques t i on (s e l f , ’ Message ’ , text ,

QMessageBox . Yes | QMessageBox .No , QMessageBox .No)
36

37 i f r ep ly == QMessageBox .No :
38 s e l f . txtName . setText (” Please ente r your Name”)
39

40

41 i f name == ’ ma in ’ :
42 app = QApplication (sys . argv)
43 app . s e t S t y l e (’ Fusion ’)
44 window = Appl i ca t ion ()
45 sys . e x i t (app . exec ())

Listing 37.7: Combining different Widgets and Event Handling Example

This gives the window as shown in Figure 37.8.

Figure 37.8: PyQt Application Example

[End of Example]

37.8 PyQt Designer

...

37.9 PyQt Applications Examples

Here some real-life examples of PyQt will be provided.

184

Some examples are:

• Logging Data from a Sensor and presenting the values on the screen

• Simulation of a system and presenting values on the screen

• Control System

• etc.

Example 37.9.1. Example Name

...

1 . . .
2 . . .

Listing 37.8: xxx

Example 37.9.2. Example Name

...

1 . . .
2 . . .

Listing 37.9: xxx

Example 37.9.3. Example Name

...

1 . . .
2 . . .

Listing 37.10: xxx

185

Part IX

Resources

186

Chapter 38

Python Resources

Here you find my Web page with Python resources [1]:
https://www.halvorsen.blog/documents/programming/python/

Python Home Page [6]:
https://www.python.org

Python Standard Library [19]:
https://docs.python.org/3/library/index.html

38.1 Python Distributions

Anaconda:
https://www.anaconda.com

38.2 Python Libraries

NumPy Library:
http://www.numpy.org

SciPy Library:
https://www.scipy.org

Matplotlib Library:
https://matplotlib.org

38.3 Python Editors

Spyder:
https://www.spyder-ide.org

187

Visual studio Code:
https://code.visualstudio.com

Visual Studio:
https://visualstudio.microsoft.com

PyCharm:
https://www.jetbrains.com/pycharm/

Wing:
https://wingware.com

Jupyter Notebook:
http://jupyter.org

38.4 Python Tutorials

Python Tutorial - w3schools.com [13]:
https://www.w3schools.com/python/

The Python Guru [20]:
https://thepythonguru.com

Wikibooks - A Beginner’s Python Tutorial:
https://en.wikibooks.org/wiki/ABeginner

TutorialsPoints - Python Tutorial:
https://www.tutorialspoint.com/python/

The Hitchhiker’s Guide to Python:
https://docs.python-guide.org

Google’s Python Class:
https://developers.google.com/edu/python/

38.5 Python in Visual Studio

Work with Python in Visual Studio
https://docs.microsoft.com/visualstudio/python/

188

Bibliography

[1] H.-P. Halvorsen, “Technology blog - https://www.halvorsen.blog,” 2018.

[2] H.-P. Halvorsen, “Technology blog - https://en.wikipedia.org/wiki/Python(programminglanguage),
′′ 2018.

[3] T. . T. P. Languages, “The 2018 top programming languages
- https://spectrum.ieee.org/at-work/innovation/the-2018-top-
programming-languages,” 2018.

[4] S. Overflow, “Stack overflow developer survey 2018 -
https://insights.stackoverflow.com/survey/2018/,” 2018.

[5] stackoverflow.blog, “The incredible growth of python -
https://stackoverflow.blog/2017/09/06/incredible-growth-python/,”
2018.

[6] python.org, “python.org - https://www.python.org,” 2018.

[7] python.org, “The python tutorial - https://docs.python.org/3.7/tutorial/,”
2018.

[8] python.org, “Python 3.7.1 documentation - https://docs.python.org/3.7/,”
2018.

[9] scipy.org, “Scipy - https://www.scipy.org,” 2018.

[10] matplotlib.org, “Matplotlib - https://matplotlib.org,” 2018.

[11] pandas, “pandas - http://pandas.pydata.org,” 2018.

[12] Wingware, “Wingware python ide - https://wingware.com,” 2018.

[13] w3schools.com, “Python tutorial - https://www.w3schools.com/python/,”
2018.

[14] Wikipedia, “Debugging - https://en.wikipedia.org/wiki/Debugging,” 2018.

[15] TechBeamers, “Get the best python ide -
https://www.techbeamers.com/best-python-ide-python-programming/,”
2018.

[16] Jupyter, “Jupyter - https://jupyter.org,” 2018.

[17] JupyterHub, “Jupyterhub - http://jupyter.org/hub,” 2018.

189

[18] python.org, “Applications for python -
https://www.python.org/about/apps/,” 2018.

[19] python.org, “The python standard library -
https://docs.python.org/3/library/,” 2018.

[20] T. P. Guru, “The python guru - https://thepythonguru.com,” 2018.

190

Part X

Solutions to Exercises

191

Start using Python

Simulation and Plotting of Dynamic System

Given the autonomous system:
ẋ = ax (1)

Where:

a = − 1

T

where T is the time constant.

The solution for the differential equation is:

x(t) = eatx0 (2)

Set T=5 and the initial condition x(0)=1.

Create a Script in Python (.py file) where you plot the solution x(t) in the time
interval:

0 ≤ t ≤ 25

Add Grid, and proper Title and Axis Labels to the plot.

Python Script:

1 import math as mt
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5

6 # Model Parameters
7 T = 5
8 a = −1/T
9

10 # Simulat ion Parameters
11 x0 = 1
12 t = 0
13

14 t s t a r t = 0

192

15 t s top = 25
16

17 increment = 1
18

19 x = []
20 x = np . z e r o s (t s top+1)
21

22 t = np . arange (t s t a r t , t s top+1, increment)
23

24

25 # Def ine the Function
26 f o r k in range (t s top) :
27 x [k] = mt . exp (a∗ t [k]) ∗ x0
28

29

30 # Plot the Simulat ion Resu l t s
31 p l t . p l o t (t , x)
32 p l t . t i t l e (’ S imulat ion o f Dynamic System ’)
33 p l t . x l ab e l (’ t ’)
34 p l t . y l ab e l (’ x ’)
35 p l t . g r i d ()
36 p l t . ax i s ([0 , 25 , 0 , 1])
37 p l t . show ()

The simulation gives the results as shown in Figure 1.

Figure 1: Simulation of Dynamic System

[End of Exercise]

193

Mathematics in Python

Create Mathematical Expressions in Python

Create a function that calculates the following mathematical expression:

z = 3x2 +
√
x2 + y2 + eln (x) (3)

Test with different values for x and y.

We create a Python Module with a Python Function (mymathfunctions.py):

1 import math as mt
2

3 de f c a l c e xp r e s s i o n (x , y) :
4

5 z = 3∗x∗∗2 + mt . sq r t (x∗∗2 + y∗∗2) + mt . exp (mt . l og (x))
6 r e turn z

Then we can create a Python Script in order to test the function:

1 import mymathfunctions as mymath
2

3 x = 2
4 y = 2
5

6 z = mymath . c a l c e xp r e s s i o n (x , y)
7

8 pr in t (z)

The results become:

1 16.82842712474619

[End of Solution]

Create advanced Mathematical Expressions in Python

Create the following expression in Python:

f(x) =
ln (ax2 + bx+ c)− sin(ax2 + bx+ c)

4πx2 + cos(x− 2)(ax2 + bx+ c)
(4)

194

Given a = 1, b = 3, c = 5 Find f(9)
(The answer should be f(9) = 0.0044)

Tip! You should split the expressions into different parts, such as:

poly = ax2 + bx+ c

num = . . .
den = . . .
f = . . .

This makes the expression simpler to read and understand, and you minimize
the risk of making an error while typing the expression in Python.

When you got the correct answer try to change to, e.g., a = 2, b = 8, c = 6

Find f(9)

Python Script:

1 . . .

[End of Solution]

195

Discrete Systems

Bacteria Population

In this task we will simulate a simple model of a bacteria population in a jar.

The model is as follows:

birth rate = bx (5)

death rate = px2 (6)

Then the total rate of change of bacteria population is:

ẋ = bx− px2 (7)

Set b=1/hour and p=0.5 bacteria-hour

We will simulate the number of bacteria in the jar after 1 hour, assuming that
initially there are 100 bacteria present.

Find the discrete model using the Euler Forward method by hand and imple-
ment and simulate the system in Python using a For Loop.

We can use e.g., the Euler Approximation:

ẋ ≈ xk+1 − xk
Ts

(8)

Ts - Sampling Interval

Then we get:

196

xk+1 − xk
Ts

= bxk − px2k (9)

This gives the following discrete differential equation:

xk+1 = xk + Ts(bxk − px2k) (10)

Now we are ready to simulate the system.

Python Script:

1 # Simulat ion o f Bacte r i a Populat ion
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters
6 b = 1
7 p = 0 .5
8

9 # Simulat ion Parameters
10 Ts = 0.01
11 Tstop = 1
12 xk = 100
13 N = in t (Tstop/Ts) # Simulat ion l ength
14 data = []
15 data . append (xk)
16

17

18 # Simulat ion
19 f o r k in range (N) :
20 xk1 = xk + Ts∗ (b ∗ xk − p ∗ xk ∗∗2) ;
21 xk = xk1
22 data . append (xk1)
23

24 # Plot the Simulat ion Resu l t s
25 t = np . arange (0 , Tstop+Ts , Ts)
26

27 p l t . p l o t (t , data)
28 p l t . t i t l e (’ S imulat ion o f Bacte r i a Populat ion ’)
29 p l t . x l ab e l (’ t [s] ’)
30 p l t . y l ab e l (’ x ’)
31 p l t . g r i d ()
32 p l t . ax i s ([0 , 1 , 0 , 1 00])
33 p l t . show ()

The simulation gives the results as shown in Figure 2.

[End of Solution]

197

Figure 2: Simulation of Bacteria Population

Simulation with 2 variables

Given the following system:

dx1
dt

= −x2 (11)

dx2
dt

= x1 (12)

Find the discrete system and simulate the discrete system in Python. Solve the
equations, e.g., in the time span [-1 1] with initial values [1, 1].

Python Script:

1 # Simulat ion with 2 Var i ab l e s
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters
6 b = 1
7 p = 0 .5
8

9 # Simulat ion Parameters
10 Ts = 0 .1
11 Tstart = −1
12 Tstop = 1
13 x1k = 1
14 x2k = 1
15 N = in t ((Tstop−Tstart) /Ts) # Simulat ion l ength
16 datax1 = []

198

17 datax2 = []
18 datax1 . append (x1k)
19 datax2 . append (x2k)
20

21

22 # Simulat ion
23 f o r k in range (N) :
24 x1k1 = x1k − Ts ∗ x2k
25 x2k1 = x2k + Ts ∗ x1k
26

27 x1k = x1k1
28 x2k = x2k1
29 datax1 . append (x1k1)
30 datax2 . append (x2k1)
31

32 # Plot the Simulat ion Resu l t s
33 t = np . arange (Tstart , Tstop+Ts , Ts)
34

35 p l t . p l o t (t , datax1 , t , datax2)
36 p l t . t i t l e (’ S imulat ion with 2 Var i ab l e s ’)
37 p l t . x l ab e l (’ t [s] ’)
38 p l t . y l ab e l (’ x ’)
39 p l t . g r i d ()
40 p l t . ax i s ([−1 , 1 , −1.5 , 1 . 5])
41 p l t . show ()

The simulation gives the results as shown in Figure 2.

Figure 3: Simulation Example with 2 Variables

Alternative Solution:

1 # Simulat ion with 2 Var i ab l e s
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters

199

6 b = 1
7 p = 0 .5
8

9 # Simulat ion Parameters
10 Ts = 0 .1
11 Tstart = −1
12 Tstop = 1
13 N = in t ((Tstop−Tstart) /Ts) # Simulat ion l ength
14 x1 = np . z e r o s (N+2)
15 x2 = np . z e r o s (N+2)
16 x1 [0] = 1
17 x2 [0] = 1
18

19

20 # Simulat ion
21 f o r k in range (N+1) :
22 x1 [k+1] = x1 [k] − Ts ∗ x2 [k]
23 x2 [k+1] = x2 [k] + Ts ∗ x1 [k]
24

25

26 # Plot the Simulat ion Resu l t s
27 t = np . arange (Tstart , Tstop+2∗Ts , Ts)
28

29 p l t . p l o t (t , x1 , t , x2)
30 p l t . t i t l e (’ S imulat ion with 2 Var i ab l e s ’)
31 p l t . x l ab e l (’ t [s] ’)
32 p l t . y l ab e l (’ x ’)
33 p l t . g r i d ()
34 p l t . ax i s ([−1 , 1 , −1.5 , 1 . 5])
35 p l t . show ()

Choose the approach that fits you. You should also check the time that the
simulation take. For larger simulations, this second alternative may be better.

[End of Solution]

200

Python for Software Development

